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Abstract— The identification of constraints on system pa-
rameters that will ensure that a system achieves desired
requirements remains a challenge in synthetic biology, where
components unintentionally affect one another by perturbing
the cellular environment in which they operate. This paper
shows how to solve this problem optimally for a class of
input/output system-level specifications, and for unintended
interactions due to resource sharing. Specifically, we show how
to solve the problem based on the input/output properties
of the subsystems and on the unintended interaction map.
Our approach is based on the elimination of quantifiers in
monotone properties of the system. We illustrate applications
of this methodology to guaranteeing system-level performance
of multiplexed and sequential biosensing and of bistable genetic
circuits.

I. INTRODUCTION

Synthetic biology is an engineering field that uses core
biomolecular processes to develop biological circuits that
achieve a desired end goal. Applications that the field im-
pacts include medical diagnostics [1], [2], [3], regenerative
medicine [4], [5], therapeutics [6], and space travel [7]. One
example of a fundamental system that might be employed
in these applications is the toggle switch, which can be
used to implement genetic memory [8]. Designing systems
like the toggle switch remains a lengthy, expensive, and
time-consuming process, mostly due to the fact that genetic
circuits depend on their cellular context, and that this context
is in turn affected by the genetic circuits themselves [5].
A well-characterized instance of this problem is the issue
of resource sharing. In particular, it has been shown that
competition for resources within the cell can lead to coupling
between otherwise-independent circuits, which can entirely
disrupt the intended circuit’s performance [9]. There has been
a plethora of work in recent years to tackle this problem.
Approaches fall into three main classes: insulation of circuit
from context [10], [11], [12], [13], [14], making the relevant
cellular context adapt to the circuit’s demand [15], [16],
or making the circuit adapt to a global cellular variable of
interest [17]. In this paper, we consider a complementary
approach to those listed above, which is to co-design multiple
genetic modules (subsystems) by optimizing the subsystem’s
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Fig. 1: To make a system satisfy (a) a specification φ (gray),
we seek (b) restrictions on the parameter space that make
the system satisfy our objectives (orange) for all inputs in a
range.

parameters. Specifically, we tackle this optimization problem
such that pre-fixed system-level specifications are met.

Contributions. In this paper, we express the problem of
finding constraints on the parameter space of a circuit to
achieve desired system steady-state input-to-output proper-
ties in terms of quantifier elimination (QE). We provide the
explicit computation of this QE problem when the system-
level specifications are monotone.

Paper outline. Section II introduces a formulation of
the problem of optimally constraining the parameter space
of a system so that it satisfies a desired input-to-output
specification, solves the problem for a class of monotone
specifications, and discusses a methodology for solving the
problem compositionally. In Section III, we consider ap-
plications of this methodology to guaranteeing system-level
performance of multiplexed and sequential biosensing and
of bistable genetic circuits. Section IV concludes the paper
and outlines next steps.

II. OPTIMAL CONSTRAINTS ON SYSTEM PARAMETERS

A critical problem in the engineering of genetic circuits is
how to pick system parameters so that specifications are met.
We address this problem here, even in the midst of resource
competition, which causes circuit components to degrade the
performance of others. In this situation, we would like to
obtain the most relaxed constraints on system parameters
that will yield a system that meets our goals. How should
we define most relaxed in this context?

Example 1. To gain insight on this issue, consider a circuit
with one input u and one output y. Suppose we want the
circuit to have the following specification: as long as the
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input satisfies 2 ≤ u ≤ 4, the output should satisfy 5 ≤
y ≤ 8. Moreover, suppose we know that y = u + θ, where
θ is a circuit parameter. This system specification is shown
in Figure 1a. We wish to find the most relaxed requirement
on θ such that if a given θ∗ satisfies this requirement, then
for all values of u satisfying 2 ≤ u ≤ 4, the system will
meet its objective. Figure 1b shows that the most relaxed
specification we can place on θ is 3 ≤ θ ≤ 4. Indeed, for
values of θ outside this range, there are values of u within
the set [2, 4] that result in the system failing to meet the
top-level objective.

Generalizing this example, suppose that our system has
to satisfy a specification φ(u, θ) as long as u satisfies a
condition σ(u). The notation φ(u, θ) means that for specific
values of u and θ, we can evaluate whether the requirement
φ(u, θ) has been satisfied. Then we want to find the most
relaxed constraint on θ, namely ψ(θ), such that for all θ, ψ(θ)
holds if and only if for all u |= σ1, the top-level requirement
φ is satisfied. In other words, we seek ψ satisfying

ψ(θ)⇔ ∀u. (σ(u)⇒ φ(u, θ)) .

As shown in [18], Prop. II.1, the expression ψ given is the
most relaxed specification that solves the formula σ ∧ x |=
φ. It is the most relaxed (or optimal) in the sense that, if
another formula ψ′(θ) is a solution to this problem, then we
must necessarily have ψ′ |= ψ. This means that the optimal
specification we can impose on θ to ensure that our system
satisfies its objectives is

ψ(θ) : ∀u. (σ(u)⇒ φ(u, θ)) . (1)

The solution to (1) is provided in [18] as a general optimiza-
tion problem. Next, we will obtain a closed-form expression
for the solution to this problem exploiting a specific structure
of the system-level requirements.

A. Constraining system-level parameters optimally

As a general framework, we will consider a circuit with
m inputs ui and n outputs yj . Suppose we want our system
to satisfy the specification φ(y) :

∧
j φj(yj) as long as the

inputs u satisfy σ(u) :
∧
i σi(ui), where σi : ui ∈ Ui for

given sets Ui.

Assumption 1. We will further assume that we can write
φj(yj) in the form Fj(G

j
1(u1), . . . , Gjm(um), θ) ≥ 0,

where θ is a vector with o entries and the functions
Fj(x1, . . . , xm, θ) are monotone in their first m arguments.

As before, we seek the most relaxed constraint ψ on the
system parameters θi such that φ is satisfied when σ holds.
We define

gji =


min
u|=σ

Gji (ui) if ∂Fj

∂xi
(Gj1(u1), . . . , G

j
m(um), θ) ≥ 0

for all uk |= σk
max
u|=σ

Gji (ui) otherwise.
(2)

1This notation, standard in logic, is read u satisfies property σ. In set
notation, it is equivalent to the statement u ∈ {v ∈ U | σ(v)}, where U is
the domain of u. Also, the symbol ∧ stands for conjunction.

Next, we state a lemma and our main result:

Lemma 1. Under the assumptions just stated, ∀u1.σ1(u1)⇒
(Fj(G

j
1(u1), . . . , Gjm(um), θ) ≥ 0) is equivalent to

Fj(g
j
1, G

j
2(u2), . . . , Gjm(um), θ) ≥ 0, where gj1 is given by

(2).

Proof. From Proposition II.3 of [18], we know
that (Fj(G

j
1(u1), . . . , Gj(um), θ) ≥ 0) ∧

σ1(u1) |= (Fj(g
j
1, G

j
2(u2), . . . , Gjm(um), θ) ≥

0) and that (Fj(g1, G
j
2(u2), . . . , Gjm(um), θ) ≥

0) |= (Fj(G
j
1(u1), Gj2(u2), . . . , Gjm(um), θ) ≥ 0).

Existentially quantifying the first formula over
u1 yields (Fj(G

j
1(u1), . . . , Gj(um), θ) ≥ 0) |=

(Fj(g
j
1, G

j
2(u2), . . . , Gj(um), θ) ≥ 0). The lemma

follows.

Theorem 1. Under Assumption 1, the most relaxed specifi-
cation ψ(θ) that ensures that the system satisfies φ(y) when
the inputs satisfy σ(u) is

ψ(θ) :
∧
j

Fj(g
j
1, . . . , g

j
m, θ) ≥ 0,

where the gji are given by (2).

Proof. We compute ψ from (1):

ψ : ∀u.(
∧
i

σi(ui)⇒
∧
j

φj)

:
∧
j

∀u1 . . . um.(
∧
i

σi(ui)⇒ φj)

Applying Proposition II.2 of [18], yields

ψ :
∧
j

∀u2 . . . um.
∧
i>1

σi(ui)⇒ (∀u1.σ1(u1)⇒ φj)

By Lemma 1, we get

ψ :
∧
j

∀u2 . . . um.
∧
i>1

σi(ui)⇒
(
Fj(g

j
1, G

j
2(u2), . . . ,

Gjm(um), θ) ≥ 0

)
Repeatedly applying Proposition II.2 of [18] and Lemma 1
to the rest of the u variables yields the theorem.

Remark 1. Oftentimes, our constraint σ will be of the form∧
i u

L
i ≤ ui ≤ uHi . If all Gji are monotonically increasing,

we can directly compute (2):

gji =


Gji (u

L
i )

∂Fj

∂xi
(Gj1(u1), . . . , Gjm(um), θ) ≥ 0,

uk |= σk

Gji (u
H
i ) otherwise.

Theorem 1 yields the most relaxed constraints on the
parameter space that solve our problem. This theorem and
Remark 1 allow us to solve (1) by a simple substitution of
values in φ for the variable we are eliminating. For instance,
in Example 1, we wanted the system to meet the top-level
requirement φ(u, θ) : φ1 ∧ φ2 when σ(u, θ) : 2 ≤ u ≤ 4,
where φ1(u, θ) : (u+θ−5 ≥ 0) and φ2(u, θ) : (−u−θ+8 ≥
0). Therefore, we can solve the QE problem for φ by solving
QE problems for φ1 and φ2 independently as follows: since



φ1 is increasing in u, and φ2 is decreasing, Remark 1 tells us
that the solution to the QE problem is obtained by replacing
u with its appropriate bound in each formula. We obtain the
solution ψ : φ1(2, θ) ∧ φ2(4, θ), which is equivalent to (θ ≥
3) ∧ (4 ≥ θ), as we obtained before.

One challenge we may face when using Theorem 1 and
Remark 1 is that they require us to have a functional relation-
ship between the top-level inputs and outputs in our system,
and this relationship may not be monotone, even when
the system is obtained by interconnecting components with
monotone input-to-output relations. One way to preserve the
monotonicity of the system-level constraints is by adding
requirements on the internal signals in our systems. That is,
we can add requirements to all outputs yi of components
that feed inputs uk of other components. While adding
requirements on internal signals enables us to solve for
parameters using Theorem 1 and Remark 1, the resulting
analysis may yield conservative results, as illustrated in the
following example.

Example 2. Consider the system shown in Figure 2. Suppose
we wish the top-level system to satisfy the specification 2 ≤
y when 3 ≤ u ≤ 6, knowing that y = x + u and x = − θ

u ,
where θ ∈ R≥0 is a system parameter. Our objective is to
compute constraints on θ that guarantee this behavior. From
(1), we are interested in computing

ψ(θ) : ∀u. (u ∈ [3, 6]⇒ u− θ/u ≥ 2) .

The system-level, input-to-output relation is y = u − θ/u,
which is not monotone in u, and therefore we cannot apply
Theorem 1. For positive values of θ, we can only have y ≥ 2
when u ≥ 1+

√
1 + θ. To make sure that we get y ≥ 2 when

u ≥ 3, we set 1 +
√

1 + θ ≤ 3, which yields the constraint
θ ≤ 3. Our analysis guarantees that if θ obeys this constraint,
we will obtain the desired system-level specification.

To enable the application of Theorem 1, we add a con-
straint on x such that our system-level specification becomes
2 ≤ y and x ≥ −1/2 when 3 ≤ u ≤ 6. Since x ≥ −1/2
and u ≥ 3, we have y = x+u ≥ 3−1/2 ≥ 2, satisfying the
requirement on y. To satisfy the requirement on x, we solve

∀u. (u ∈ [3, 6]⇒ −θ/u ≥ −1/2) .

We can use Theorem 1 and Remark 1 to solve this problem,
since the system level constraint can be written as F (u) ≥ 0,
where F (u) = −θ/u+1/2 is monotonically increasing in u.
The application of the remark yields the constraint −θ/3 +
1/2 ≥ 0, which is equivalent to θ ≤ 3/2. We observe that by
adding a constraint on the intermediate signal x, our resulting
constraints on θ are conservative.

III. APPLICATIONS

Now we will apply the methodology outlined in Section II
to compute constraints on the parameters that yield desired
system-level performance in several scenarios. All results can
be reproduced by executing the code that accompanies this
paper2.

2https://github.com/pacti-org/BioPacti/blob/main/
SummarizedCaseStudies/

Σ1 Σ2
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Fig. 2: A system with two components is required to satisfy a
top-level specification. The input-to-output relations for both
components are monotone, but the system’s input-to-output
relation is not.

Fig. 3: Block diagram representation of a genetic module.
Subsystem Σi takes as input ui and wi, and outputs yi and
di. Here, ui is the intended input of the module, while input
wi is a disturbance input that captures the perturbation on
the cellular resources available to this module. Similarly, yi
is the intended output, while di is a disturbance output that
captures the load on cellular resources that system Σi applies
[19].

A. Multiplexed biosensing in bacteria

First, we will consider the design of genetic circuits
in bacteria. These circuits are formed by interconnecting
subsystems. We will consider subsystem Σi as a genetic
module encapsulating the mRNA and protein dynamics of
gene expression, given inputs ui and wi, and outputs yi and
di (Figure 3). Specifically, we have mRNA mi and protein
pi as state variables, governed by the following dynamics
[19]:

ṁi = Tivi(ui)− δmi

ṗi = Ri
mi/κi

1 +mi/κi + wi
− γpi,

(3)

with outputs
yi = pi, di = mi/κi,

and interconnection rule

wi = Σj 6=idj . (4)

In this model, output di captures the disturbance that
module Σi applies to the cellular ribosome pool, while wi
is the cumulative perturbation to the ribosome pool that
all other modules apply, thereby affecting system Σi. In
this system, Ti is the basal transcription rate of mRNA,
Ri is a lumped parameter that is proportional to both the
translation rate constant, as well as the total translation
resources (chiefly ribosomes) in the system, and κi is the
tunable mRNA-ribosome binding dissociation constant. For
our purposes in this paper, we consider θi := 1/κi as
the tunable parameters used for design, which practically
represent the ribosome binding site strength. This strength, in
practice, is tunable by the genetic sequence of the ribosome
binding site (RBS) using tools such as the RBS calculator
[20]. Beyond this, δ is the degradation rate constant of
mRNA, γ is the decay rate constant for proteins, and vi(ui)



is a Hill-like function describing the effect that the input
ui has on the production of mRNA. If ui activates gene
expression, vi(ui) is a monotonically increasing function of
ui; otherwise, vi(ui) is a monotonically decreasing function.
Here, we assume that ui activates transcription and so each
vi is a monotonically increasing function of ui. This model
of ribosome competition in the cell has been experimentally
validated in [9]. We will be interested in studying the
input/output steady-state characteristics of these systems.

In this section, we consider two genetic modules Σ1

and Σ2 working in parallel, as shown in Figure 4a. This
setup is representative of a multiplexed biosensor, in which
each input ui is a biomolecule of interest, to which the
system responds by generating an output signal yi, typically
a fluorescent protein [21], [22], [23], [24]. Without resource
competition, the red arrows are absent in the block diagram
of Figure 4a, and each output responds to its corresponding
input independent of the other inputs. Multiplexed biosensors
are of interest for detecting multiple different pathogens
concurrently, such as for diagnostic applications, while main-
taining the ability to uniquely identify each [3]. However,
due to ribosome competition, when the output of one sensor
increases due to its own input rising, the ouput of the second
sensor declines [25]. In this section, we therefore charac-
terize the parameter space that allows, despite ribosome
competition, both sensors to keep their steady state outputs
sufficiently high when their inputs are presented.

From (3) and (4) with i ∈ {1, 2}, we can write the steady
state value of the output as:

yi =
cidi

1 + d1 + d2
, (5)

where ci = Ri/γ and di = θimi = θi
Ti

δ vi(ui). We will
require our circuit to satisfy the following specification: yi ≥
yHi when ui ∈ [uHi , u

S
i ] for i ∈ {1, 2}. In other words, we

want the outputs to exceed the thresholds yHi when the inputs
ui are appropriately bounded. Using (5), we express the top-
level specification in terms of the ui and θi:

φ(u, θ) :
∧
i

ciθi
Ti

δ vi(ui)

1 + θ1
T1

δ v1(u1) + θ2
T2

δ v2(u2)
≥ yHi .

For the inputs, we have the specification

σ(u) :
∧
i

uHi ≤ ui ≤ uSi .

The specification of the parameters can be obtained by
applying (1). We obtain

ψ(θ) : ∀u1, u2. (σ(u1, u2, θ)⇒ φ(u1, u2, θ)). (6)

We observe that we can express φ(u, θ) in the form required
by Assumption 1 by setting Fj(x1, x2, θ) =

cjθjxj

1+θ1x1+θ2x2
−

yHi and Gji (xi) = Ti

δ vi(ui). The functions Fj are monotone
in both arguments xi when the θi are nonnegative, which we
shall assume; moreover, the Gji are monotonically increasing.
This implies that we can solve the QE problem (6) by using
Remark 1.
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Fig. 4: Analysis of multiplexed biosensing in bacteria. (a)
The system model contains two components in parallel,
sharing resources. We analyze the system to obtain (b) re-
strictions on the set of parameters that make the system work
as intended. The system-level requirements and constants
that yield these results are uM1 = uM2 = 0, uL1 = uL2 =
0.05, uH1 = uH2 = 4, uS1 = uS2 = 4.1, yL1 = 0.2, yH1 =
0.3, yL2 = 0.3, and yH2 = 0.4. c1 = c2 = 1 and T1/δv1 and
T2/δv2 are the identity function.

This computation yields constraints on the θi that en-
sure that the system exceeds its high thresholds yHi when
the inputs lie in the range [uHi , u

S
i ]. We can carry out a

similar, independent analysis to compute constraints on the
parameters θi that will ensure that the system does not
exceed low thresholds yLi when the inputs lie in the range
[0, uLi ]. Figure 4b shows the computation of constraints on
the parameters θi to yield both high and low thresholds for
the outputs y for a given set of requirements and constants.

B. Sequential signal processing in bacteria

Now we consider a series of two systems, as shown in
Figure 5a. This signal cascade is a common motif in many
biological circuits, as it can be used to either amplify a
signal or introduce delay into a signal [26]. In this topology,
however, even if each genetic module Σi has a monotonically
increasing input/output behavior, the composition of the
two systems may not share this property, on account of
ribosome competition [9]. Here, we wish to design our
system parameters to ensure that, for high inputs, the system
output is above a threshold and for low inputs, the system
output is below a threshold.

The mathematical model of this system is as in (3) and
(4), with i ∈ {1, 2}. We wish to consider the steady state of
our system, for which we find:

yi =
cidi

1 + d1 + d2
. (7)

where ci = Ri/γ and di = θimi = θi
Ti

δ vi(ui) for the
parameters defined in (3). Also, we have u1 := u and u2 :=
y1, as the systems are connected in series. It is shown in [27]
that systems of this form have a unique, stable equilibrium
point. The question is to find restrictions on the space of
parameters θi that will yield y2 ≥ yH2 in the steady state
when u satisfies uS ≥ u ≥ uH .



As discussed in Section II, to keep the system constrains
monotone, we will introduce a system-level requirement for
the signal y1, namely, we will also require that yH1 ≤ y1 ≤
yS1 . When introducing this requirement, y1 becomes both an
output and input variable of the system for the following
reason: by assuming bounds on y1, we obtain bounds on d2,
which contributes to bound y1 again. This behavior in our
analysis stems from the fact that there is a feedback loop
in our system. Thus, we express our top-level requirement
φ in terms of inputs u and y1 and the parameters θi using
(7). We obtain the system specification φ(u, y1, θ1, θ2) : ∧3i=1

φi(u, y1, θ1, θ2) given by

φ1 :

(
yH1
c1
≤

θ1
T1
δ
v1(u)

1 + θ1
T1
δ
v1(u) + θ2

T2
δ
v2(y1)

)

φ2 :

(
θ1
T1
δ
v1(u)

1 + θ1
T1
δ
v1(u) + θ2

T2
δ
v2(y1)

≤ yS1
c1

)

φ3 :

(
yH2
c2
≤

θ2
T2
δ
v2(y1)

1 + θ1
T1
δ
v1(u) + θ2

T2
δ
v2(y1)

)
.

We have the following bounds on the input variables:

σ(u, y1) :
(
uS ≤ u ≤ uS

)
∧
(
yH1 ≤ y1 ≤ yS1

)
.

Our objective is to obtain the most relaxed constraints on the
parameters θi such that φ holds when σ holds. This most
relaxed specification is given by applying (1):

ψ(θ1, θ2) : ∀u, y1. (σ(u, y1)⇒ φ(u, y1, θ1, θ2)). (8)

We observe that we can apply Theorem 1 and Remark 1 to
solve this problem for the following reason: We can express
φ1 as φ1 : F1(Gj1(u), G1

2(y1)) ≥ 0 with F1(x1, x2, θ1, θ2) =
θ1x1

1+θ1x1+θ2x2
− yH1

c1
and G1

i (·) = Ti/δvi(·). F1 is monotone
in both arguments when the θi are nonnegative, which we
shall assume; we also have that the G1

i are monotonically
increasing. A similar reasoning applies to φ2 and φ3. This
implies that Assumption 1 holds, and we can solve (8)
by variable substitution using Remark 1. After solving for
the constraints on the θi that guarantee that we will have
y2 ≥ yH2 when uH ≤ u ≤ uS , we consider further
constraints on the θi that also guarantee that the system
output y2 will remain below a threshold yL2 when the top
level input u is below a threshold uL. We use a similar
procedure to compute these constraints. Figure 5b shows
the result of computing the parameter specifications that
guarantee both thresholds simultaneously for fixed values of
requirements and system constants. Figures 5c and 5d show
the input-to-output behavior of system when implemented by
using parameters θi that satisfy the constraints of Figure 5b.
We observe that the system-level performance satisfies the
objective specifications. Details of the implementation can
be found in the accompanying code2.

C. Bistable genetic circuit

Next, we consider the design of a bistable circuit to
demonstrate that the framework to compute a parameter
space that satisfies specifications is sufficiently general to
capture more sophisticated specifications, such as bistability.
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Fig. 5: Analysis of sequential signal processing in bacteria.
(a) The system model contains two elements in series, shar-
ing resources. With our analysis, we obtain (b) restrictions on
the set of parameters for desired system behavior. The red
dots indicate samples extracted from the parameter space
to verify the satisfaction of the system requirements. We
simulate the circuit as u varies from (c) 0 to uL and from
(d) uH to uS . Each plot in (c) and (d) corresponds to one
parameter sampled from the region (b). The system-level
requirements and constants that yield these results are c1 =
c2 = 1, uM = 0, uL = 1, uH = 10, uS = 100, ym1 =
0, yL1 = 0.1, yH1 = 0.2, yS1 = 0.45, yL2 = 0.1, yH2 = 0.6,
T1v1(uM )/δ = 0, T1v1(uL)/δ = 0.02, T1v1(uH)/δ = 4,
T1v1(uS)/δ = 5, T2v2(yM1 )/δ = 0, T2v2(yL1 )/δ = 0.01,
T2v2(yH1 )/δ = 4.1, and T2v2(yS1 )/δ = 4.15.

For simplicity, we do not consider resource sharing in this
example, but the analysis can be readily extended to such a
case. Multistable circuits are important for development and
differentiation in mammalian cells. We consider a bistable
circuit design reported by Lebar et al [28], which utilizes
both mutual inhibition and positive feedback between two
genes to generate two stable states as shown in Figure 6.
Such models with bistable attractor states have been used to
explain transcription factor-induced differentiation in mam-
malian cell fate decisions [29].

The variables, mi and mj , represent the mRNA molecules
produced from transcription of subsystems Σi and Σj ,
respectively. Each of these mRNA molecules encodes an
activator (Ai, Aj) that implements positive transcriptional
feedback and a repressor (Ri, Rj) that inhibits transcription
of the opposite gene. For this system, we modify the defi-
nition of each subsystem Σi from the previous sections, so
that we have the following dynamics:



Fig. 6: Schematic of a genetic circuit with two genes
in mammalian cells comprising self activation and mutual
inhibition. Solid lines represent activation, and dashed lines
are repression.

ṁi =

(
α0,i + αi

aiui
ki

)
Ditot

1 + aiui

ki
+

a′iwi

k′i

− δmi

Ȧi = κmi − γAi
Ṙi = κmj − γRi,

(9)

with outputs:
yi = (mi, Ai), di = Ri,

and input/interconnection rule:

ui = yi2 , wi = Σj 6=idj .

In this model, α0,i and αi represent leaky and transcription
factor-induced transcription, respectively, for module Σi. For
the promoter of genetic module Σi, the binding kinetics
of activator ui are given by ai and ki, and the binding
kinetics of the repressor wi are given by a′i and d′i. Ditot

represents the copy number of the gene in module Σi.
Finally, κ represents the mRNA translation rate constant, δ
is the mRNA degradation rate constant, and γ is the protein
degradation rate constant.

Under certain parameter regimes, this circuit has two
stable steady states with high levels of either yi2 or yj2 as
well as one unstable steady state with intermediate levels of
both activator proteins. Here, we compute parameter ranges
under which the two stable steady states are within a certain
domain. Since the repressors dj are expressed from the same
mRNA molecule as the activator yi2 , we assume that they
have the same dynamics. Thus, we analyze a 4-state model
with yi1 , yj1 , yi2 , and yj2 variables, which is obtained by
setting yi2 = dj in the dynamics of system (9).

1) Specifications: We want to analyze the region of the
parameter space where the system shows two stable steady
states. Our design parameters are α0,i, the basal transcription
rate, αi, the activated transcription rate, and Di,tot, the total
gene copy number. These parameters were chosen as they
are easily experimentally tuned through promoter design and
genetic cargo delivery. We assume that the other parameters
in the model (ai, a′i, ki, k

′
i, δ, and γ) are fixed to a constant

value. Further, we note that to achieve bistable behavior we

Model parameter values

Parameter Value
ai 0.5
ki 1
a′i 10
k′i 1
aj 1
dj 1
a′j 10
d′j 1
κ 20
δ 1
γ 0.05

Threshold constants

Parameter Value
yHi2 45

yLj2 0.02

yHi1 1

yLj1 5× 10−4

yHj2 90

yLi2 0.05

yHj1 0.25

yLi1 1× 10−3

TABLE I: Numerical values for parameters and constants.

must have ai/ki 6= a′i/k
′
i. For this problem, we state the

system specification by first describing the top-level input-
output system specifications.

Our general strategy is to first determine parameter con-
ditions that guarantee the co-existence of two steady states
in correspondence of high yi1 , yi2 with low yj1 , yj2 and low
yi1 , yi2 with high yj1 , yj2 . To provide an analysis approach
that is generally applicable in any dimension, we do not rely
on algebraically computing the system’s steady state. Rather,
we rely only on the monotonicity properties of the system
dynamics. As such, we write the system specifications that
impose two conditions for the concurrent presence of two
equilibria:(

yi1 ≥ y
H
i1 ∧ yj1 ≤ y

L
j1 ∧ yi2 ≥ y

H
i2 ∧ yj2 ≤ y

L
j2

)
∨(

yi1 ≤ y
L
i1 ∧ yj1 ≥ y

H
j1 ∧ yi2 ≤ y

L
i2 ∧ yj2 ≥ y

H
j2

) (10)

where yHi1 , y
H
i2
, yLj1 , y

L
j2

are thresholds for the first equilibrium
point where yi1 and yi2 are in the “on” state and yj1 and
yj2 are in the “off” state of the circuit. Similarly, we have
thresholds for the other equilibrium, yLi1 , y

L
i2
, yHj1 , y

H
j2

that
specifies the second requirement. We use nominal parameter
values for all parameters other than the design parameters
shown in Table I.

With these parameter values, we observe that system
nullclines exhibit bistable behavior with three equilibrium
points out of which two are stable and one is unstable. Using
the nullcline analysis, we also choose values for the threshold
parameters introduced above yHi2 , y

L
j2
, yHi1 , y

L
i1
, yHj2 , y

L
i2
, yHj1 ,

and yLi1 (see Table I). We visualize the threshold parameters
overlaid on the nullclines and the region for the top-level
system specification in Figure 7.

2) Exploiting monotonic dynamics to derive feasible pa-
rameters: Our goal is to find feasible regions for the design
parameters such that the necessary requirements described
by φ for bistable equilibria are satisfied. We write the steady
state conditions of the system as:(

α0,i + αi
aiyi2
ki

)
Di tot

1 +
aiyi2
ki

+
a′iyj2
k′i

= δyi1

κyi1 = γyi2 . (11)



Fig. 7: The nullclines for nominal system dynamics and an
overlay of the threshold constants used to define the system
specifications. The nullclines are plotted in log-log scale.

We introduce new parameters pi := α0,iDi tot and qi :=
αiDi tot which lump our design parameters. We also define
new constants bi = ai/ki and b′i = a′i/k

′
i for brevity. Then,

in addition to (11), the steady-state conditions become:

pi + biqiyi2
1 + biyi2 + b′iyj2

= δyi1 , (12)

where i 6= j. Now we start analyzing the constraints on the
parameters pi and qi that will make the system achieve yi1 ≥
yHi1 ∧ yj1 ≤ yLj1 ∧ yi2 ≥ yHi2 ∧ yj2 ≤ yLj2 .

We can express these requirements using (11) and (12) in
order to start setting up the problem in such a way that we
can apply Theorem 1 to obtain constraints for the system
parameters. One difficulty with this approach, however, is
that (12) is not necessarily monotone in yi2 . As a result,
we add two additional top-level constraints that ensure that
this function is monotone by requiring that the derivative
of (12) with respect to yi2 be positive. Thus, the top-level
requirement φ(y, p, q) is given by

φ :

(
pi + biqiyi2

1 + biyi2 + b′iyj2
≥ δyHi1

)
∧ (13)(

pj + bjqjyj2
1 + bjyj2 + b′jyi2

≤ δyLj1

)
∧ (14)(

κyi1 ≥ γyHi2
)
∧
(
κyj1 ≤ γyLj2

)
∧ (15)

(qi(1 + b′iyj2) ≥ pi) ∧
(
qj(1 + b′jyi2) ≥ pj

)
, (16)

where (13) and (14) come from (12); (15) comes from (11);
and (16) comes from requiring (12) to be monotonically
increasing in yI2 for I ∈ {i, j}.

We also have the constraints

σ(yi1 , yi2 , yj1 , yj2) :
(
yi1 ≥ yHi1

)
∧
(
0 ≤ yj1 ≤ yLj1

)
∧(

yi2 ≥ yHi2
)
∧
(
0 ≤ yj2 ≤ yLj2

)
.

Fig. 8: The feasibility regions for the design parameters:
pi, pj , qi, qj .

We compute the constraints on the pi and qi that yield
the desired system-level behaviors by using (1). We want to
compute

ψ(p, q) : ∀yi1 , yi2 , yj1 , yj2 . (σ(y)⇒ φ(y, p, q)) . (17)

To compute this QE, we verify whether Assumption 1 holds.
We already observed that (13) and (14) can be understood
as monotonic in both arguments yi2 and yj2 because of
the addition of requirement (16). The two expressions in
(15) are clearly monotonic functions. Since all predicates
are monotone, we can apply Theorem 1 and Remark 1 to
solve (17). We obtain the region

0.042pi + 0.94qi ≥ 1,

0.002pj + 4.4e− 05qj ≤ 5× 10−5,

pi − qi ≤ 0,

pj − 451qj ≤ 0.

Repeating the process above for the condition in the second
line of (10), where yi1 ≤ yLi1 , yj1 ≥ yHj1 and yi2 ≤ yLi2 , yj2 ≥
yHj2 gives similar inequalities that bound the region of feasible
values. Merging these conditions by taking the intersection,
we obtain the final bounds on the design parameters. For
the chosen parameter values, we visualize these feasibility
bounds in 2D graphs in Figure 8.

Finally, to verify our predictions on feasible bounds on
the design parameters, we choose a range of values of
parameters from the feasibility regions and plot the nullclines
to assess bistability. All sampled values of parameters from
the feasibility regions lead to bistable behavior as visualized
with nullclines in Figure 9.

IV. CONCLUSIONS AND FUTURE WORK

This paper considered the computation of constraints on
system parameters with the objective of ensuring that the sys-
tem satisfies an input-to-output requirement. We expressed
the computation of the optimal solution for this problem in
terms of quantifier elimination. We provided a method to
solve this problem by replacing variables when the system-
level objective is given in terms of monotone functions.
Applications to guaranteeing system-level performance of
multiplexed and sequential biosensing and of bistable genetic
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Fig. 9: Prediction of system behavior using parameter values
sampled from the computed feasibility regions. The intersect-
ing nullclines show equilibrium points, and for all feasible
values we observe three such intersections out of which two
are stable equilibria (the regions are denoted). The numerical
values of the parameters of interest (pi, pj) and (qi, qi) are
shown on color maps. All other parameters are set at nominal
values given in Table I. The plot is shown in log-log scale.

circuits showed the viability of the approach. Future work
includes the analysis of more complex biological circuits
(such as multi-stable systems) and experimental validations.
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[9] Y. Qian, H.-H. Huang, J. I. Jiménez, and D. Del Vecchio, “Resource
competition shapes the response of genetic circuits,” ACS synthetic
biology, vol. 6, no. 7, pp. 1263–1272, 2017.

[10] H.-H. Huang, Y. Qian, and D. Del Vecchio, “A quasi-integral controller
for adaptation of genetic modules to variable ribosome demand,”
Nature communications, vol. 9, no. 1, p. 5415, 2018.

[11] R. D. Jones, Y. Qian, V. Siciliano, B. DiAndreth, J. Huh, R. Weiss, and
D. Del Vecchio, “An endoribonuclease-based feedforward controller
for decoupling resource-limited genetic modules in mammalian cells,”
Nature communications, vol. 11, no. 1, p. 5690, 2020.

[12] R. D. Jones, Y. Qian, K. Ilia, B. Wang, M. T. Laub, D. Del Vecchio,
and R. Weiss, “Robust and tunable signal processing in mammalian
cells via engineered covalent modification cycles,” Nature communi-
cations, vol. 13, no. 1, p. 1720, 2022.

[13] T. Frei, F. Cella, F. Tedeschi, J. Gutiérrez, G.-B. Stan, M. Khammash,
and V. Siciliano, “Characterization and mitigation of gene expression
burden in mammalian cells,” Nature communications, vol. 11, no. 1,
p. 4641, 2020.

[14] J. Gutiérrez Mena, S. Kumar, and M. Khammash, “Dynamic cyber-
genetic control of bacterial co-culture composition via optogenetic
feedback,” Nature Communications, vol. 13, no. 1, p. 4808, 2022.

[15] A. P. Darlington, J. Kim, J. I. Jiménez, and D. G. Bates, “Dy-
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