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Abstract

Model reduction methods usually focus on the error performance analysis; however, in presence of
uncertainties, it is important to analyze the robustness properties of the error in model reduction as well.
This problem is particularly relevant for engineered biological systems that need to function in a largely
unknown and uncertain environment. We give robustness guarantees for structured model reduction of linear
and nonlinear dynamical systems under parametric uncertainties. We consider a model reduction problem
where the states in the reduced model are a strict subset of the states of the full model, and the dynamics
for all of the other states are collapsed to zero (similar to quasi-steady-state approximation). We show two
approaches to compute a robustness guarantee metric for any such model reduction — a direct linear analysis
method for linear dynamics and a sensitivity analysis based approach that also works for nonlinear dynamics.
Using the robustness guarantees with an error metric and an input-output mapping metric, we propose an
automated model reduction method to determine the best possible reduced model for a given detailed system
model. We apply our method for the (1) design space exploration of a gene expression system that leads to
a new mathematical model that accounts for the limited resources in the system, and (2) model reduction of
a population control circuit in bacterial cells.

I. INTRODUCTION

For applications of control theory to physical system design, a reduced model is commonly used
that describes the dynamics of interest in lower dimensions to simplify the design process. Reduced
models are used to specify the desired objectives or the performance specifications of a system. To
meet these objectives, the designer needs to map the reduced models to the level of system design and
also mathematically characterize this mapping to understand and analyze system performance. For
biological systems, this is a challenge that hinders the use of mathematical models in experimental
designs and analysis to some extent.

For model-based design of biological circuits, we need to develop mathematical models that map
system design specifications to mechanistic details. Commonly used phenomenological models are
based on empirical information and their parameters describe lumped properties of the system that
are effective in explaining the observed experimental data [1]–[5] but have not been readily used for
forward engineering of biological circuits. Towards that end, to explore different design possibilities
one needs to carefully justify the validity of the underlying assumptions for each model [6]. Time-
scale separation is one of the most common properties exhibited by biological systems. For example,
the half-life of an mRNA in E. coli is around 100 seconds whereas the average half-life for a protein
is of the order of a few hours. Hence, it is important to consider the effects of this assumption on
biological system models.

Singular perturbation theory [7] is the formal way of deriving mathematical models for system
dynamics with time-scale separation. For such systems, it is common to separate the dynamics into
fast and slow modes. Then, singular perturbation theory can be used to derive reduced models that
accurately represent the dynamics of interest. A key feature of singular perturbation theory is that
the states of the reduced model are a subset of the states of the full model. In other words, the
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structure of the model and the meaning of the states and parameters is conserved by construction in
any reduced model obtained using singular perturbation theory. This is not automatically the case in
other model reduction techniques where transformations are introduced [8], [9] and hence in such
techniques, the meanings of the states may not be preserved. We define structured model reduction
in this paper as the set of model reduction methods where the states of the reduced models are a
strict subset of the states of the full model.

The advantage of structured model reduction techniques is that an explicit mapping between the
full and the reduced model is readily available [10]. Moreover, since the parameters and the states
in the reduced model have the same meaning as in the full model, the design outputs and analysis
results obtained using the reduced model can easily be given context and compared with the full
model [11]. This is especially relevant for biological system modeling as it is often important to
map the reduced dynamics to the mechanistic details. However, due to the strict condition on the
possible reduced model states, structured model reduction methods suffer from the limitation that
the choice of reduced models is restricted and dependent on the modeling details of the full system.
That is, for a given full model it may not always be possible to analytically derive a reduced model.
Other model reduction methods that are projection-based or those which preserve the input-output
mapping are better in that respect. In this paper, we focus on the former class of model reduction
problems that preserve the modeling structure in the reduced models and hence more relevant for
biological systems.

The goal with any model reduction problem is to minimize the error in the performance of the
reduced model when compared to the full model. This error performance criterion can be general
and depend on trajectories of all states and output variables, or specific, such as minimizing a
particular metric of interest. Singular perturbation theory for model reduction and its error analysis
is a widely studied topic in the literature [12]–[14] for different system and control design settings.
A commonly used method for model reduction that is derived from the singular perturbation concept
of time-scale separation is the quasi-steady-state approximation (QSSA) method [15]–[18]. Here, a
subset of states is assumed to be at steady-state and hence their dynamics are collapsed to algebraic
relationships. Error analysis for QSSA based model reduction [19]–[21] has been studied as well.
However, robustness of these model reduction methods is not as widely studied in the literature.

Robust control design is a well-studied problem in control theory. The extensions of robust control
theory to singularly-perturbed systems are studied in [22] and [23]. Similarly, robust stability analysis
of adaptive control problems, linear time-varying systems, and the general parametric uncertainty
problems has been of interest as well [24], [25]. A complementary, although not as widely applicable,
approach to study the robustness of systems is to use sensitivity analysis of system variables or de-
rived properties under parameter variations. Due to the success of robust control design methods [24]
for different applications, the more holistic approach of sensitivity analysis for robustness estimates
has not received much attention. In [26], sensitivities of singular values are used to give estimates
for robustness properties of a linear feedback system. The advantage of such a method is that it
analyzes the effect of multiple parametric uncertainties and hence can be used to enhance the usual
robust stability approaches.

Our problem statement is motivated by this sensitivity analysis approach for robustness and by the
lack of existing results for robustness estimates of error in structured model reduction. In particular,
we give robustness guarantees for the error in model reduction under parametric uncertainties. Using
linear analysis, we give a robustness metric for QSSA-style model reduction of linear dynamical
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systems. We present a complementary approach that employs sensitivity analysis of the error in
model reduction to estimate the robustness under parametric uncertainties. This approach works
for nonlinear dynamical systems as well. We demonstrate our method with the help of common
biomolecular system examples. Using our results on the model reduction robustness metric, we
derive a new mathematical model for gene expression that accounts for ribosomal loading better
than the commonly used models in the literature. Some preliminary versions of results in this paper
are in [27]–[29].

II. PRELIMINARIES

A. Notation
We denote an eigenvalue of a matrix P by λ(P ). The maximum eigenvalue will be denoted by
λmax(P ). For a state-dependent matrix P (x) we denote the maximum eigenvalue of P over all
values of x by λmaxx(P ). Throughout this paper, we consider the Euclidean 2-norm for vectors. For
example, we use the notation ‖x‖ for the 2-norm of x ∈ Rn and similarly for matrices ‖·‖ represents
the induced 2-norm.

B. Problem Formulation
The full system model is given by the following linear autonomous state-space equation

ẋ = A(θ)x, y = Cx, x(0) = x0, (1)

where x ∈ Rn are state variables, the output vector is y ∈ Rk and θ =
[
θ1, θ2, ..., θp

]T is the vector
of all model parameters. We consider a structured model reduction in this paper where the dynamics
of a subset of states (xc) are collapsed (converted to algebraic relationships) on account of being at
quasi-steady-state. The remaining states are the states of the reduced model, x̂. The reduced model
is given by

˙̂x = Â(θ)x̂, ŷ = Ĉx̂, x̂(0) = x̂0, (2)

where x̂ ∈ Rn̂ are the reduced state variables and ŷ ∈ Rk is the output vector. We assume that the
full and the reduced model have the same number of outputs but different dynamics. Throughout
this paper, we also assume that both the full and the reduced systems are asymptotically stable and
observable. This model reduction corresponds to a time-scale separation in the dynamics of the full
model where the meaning of all states and parameters is retained in the reduced model. It is a relaxed
form of singular perturbation theory based model reduction in that it does not require the system to
be in the standard separable form, which is a hard condition to satisfy for general system dynamics,
as we will see next.

Singular perturbation theory [7] is the standard way to derive reduced models and bounds on error in
model reduction for the problem statement given above. However, to use singular perturbation theory
the system dynamics need to be separable according to the different time scales. For the problem
formulation above, the requirement would be that we can write the dynamics in the following form,

˙̂x = A11x̂+ A12xc,

εẋc = A21x̂+ A22xc,
(3)

where A11 ∈ Rn̂×n̂, A22 ∈ R(n−n̂)×(n−n̂), and similarly we have A12 and A21. Now, under the
condition that ε→ 0 and Hurwitz A22, we get the reduced model as in equation (2) with,

˙̂x = (A11 − A12A
−1
22 A21)x̂ := Âx̂. (4)

In Figure 1, the block diagram for a system with time-scale separation is given. Using singular
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Fig. 1: Structured model reduction of a linear system. The 1/s block represents an integrator.

perturbation theory, conditions can be derived under which the error in model reduction converges
to zero:

‖x− x̂‖ ≤ O(ε) (5)

for a time-scale separation parameter ε ∈ [0, ε∗]. The error in model reduction goes to zero as ε→ 0.
This is the standard model reduction problem using singular perturbation to separate the time scales
of the model where the dynamics of the “fast” states of the system (xc) are collapsed to zero when
ε→ 0 and the dynamics of the “slow” states (x̂) is the reduced dynamics.

Under uncertainties in the system dynamics, it is important to analyze the robustness of the model
reduction. The results on robustness for singular perturbation based model reduction either focus on
robust controller design under uncertainties for singularly perturbed systems [22], [23] or analyze the
effect on the time-scale separation parameter ε due to uncertainties. Recently, a singular perturbation
margin [30] (similar to the gain margin and phase margin definitions) has been proposed to assess
the robust stability of singularly perturbed systems under uncertainties. It is defined using the ε∗

given in the error approximation equation (5). This framework can be used to compute a robustness
estimate of the model reduction error for the singular perturbation method. An extension of this
robust stability margin for nonlinear dynamics is given in [31]. Despite the rich body of literature
on singular perturbation theory, the major limitation of such a model reduction approach remains
that the system dynamics must be written in the standard form (3). As stated in [32], for physical
systems it is usually not straightforward to put a model in the singularly perturbed form since the
choice of combination(s) of parameters to be considered small is not always clear. Hence, the relaxed
approach of using QSSA is common for various applications.

In QSSA, the dynamics of a set of states are collapsed to zero to get the reduced-order model.
The choice of states to be collapsed is usually driven by known time-scale separations in the system
model. Although QSSA is a widely used approach it does not necessarily guarantee error performance
as in equation (5). The limitation of QSSA is that the mathematical justification and conditions for
approximating a variable to be at a steady-state are not always obvious. As a result, there could be
many possibilities of reduced models and so it is the designer’s task to find a “correct” QSSA based
model reduction. Towards that end, in [21], a structured model reduction algorithm is presented that
guides the choice of collapsed states so that the error between the output of the full and the reduced
models is minimized. Other QSSA error analysis [19] approaches can also be used for this purpose.
In this paper, we briefly discuss model reduction error results for QSSA further. Our main focus
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is on the problem of robustness of this structured model reduction, that is, how robust a particular
model reduction is under parametric uncertainties.

To formulate this problem, we first construct an augmented state-space system that consists of
variables of the full and the reduced model together:

x̄ :=

[
x
x̂

]
.

We denote all augmented variables similarly with a bar on top of the usual variables. So,

Ā :=

[
A 0

0 Â

]
.

For the augmented state variable, we can write the following state-space system,

˙̄x = Ā(θ)x̄, ζ = C̄x̄, x̄(0) =

[
x0

x̂0

]
, (6)

where ζ is the error in model reduction defined as ζ = y − ŷ, hence C̄ =
[
C −Ĉ

]
.

To study the robustness of the structured model reduction (that is the robustness of deriving the
particular reduced model (x̂, Â) under uncertainties in model parameters) we need an upper bound
on ‖ζ‖ as the parameters θ vary. For the linear augmented system we can write the following by
solving for ζ(t, θ),

ζ(t, θ) = C̄eĀtx̄(0), (7)

where ζ ∈ Rk.

Lemma 1 (See [33]). For a Hurwitz matrix A, the norm of the matrix exponential is bounded above
as ∥∥eAt∥∥ ≤ e−|µ|t

for all t ≥ 0, where µ is the logarithm norm of A [34]. For the log-norm induced by the 2-norm,
we have that

µ(A) =
λmax(A+ AT )

2
,

and for Hurwitz A, µ is always negative.

We use this to give an important result on the derivative of the matrix exponential with respect to
a parameter.

Lemma 2. The derivative of the matrix exponential eAt with respect to a parameter θi is given by

∂eAt

∂θi
=

∫ t

0

e(t−τ)A∂A

∂θi
eτAdτ. (8)

If A is Hurwitz, the norm of the derivative of the matrix exponential with θi is bounded above by∥∥∥∥∂eAt∂θi

∥∥∥∥ ≤ ∥∥∥∥∂A∂θ
∥∥∥∥ te−|µ|t. (9)

where |µ| is the absolute value of the log-norm of A as in Lemma 1.

Proof. The first part of the lemma (in equation (8)) is a result proven in [35] and a simplified version
is given in [36] and [37]. We give an alternative proof in Appendix 1-A. To prove the second part,
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given in equation (9), write the norm of the derivative of the matrix exponential with respect to a
parameter θi as ∥∥∥∥∂eAt∂θi

∥∥∥∥ =

∥∥∥∥∫ t

0

e(t−τ)A∂A

∂θi
eτAdτ

∥∥∥∥ ≤ ∫ t

0

∥∥e(t−τ)A
∥∥∥∥∥∥∂A∂θi

∥∥∥∥∥∥eτA∥∥ dτ.
Now using the result of Lemma 1, since A is Hurwitz, we have,∥∥∥∥∂eAt∂θi

∥∥∥∥ ≤ ∥∥∥∥∂A∂θi
∥∥∥∥∫ t

0

e−(t−τ)|µ|e−τ |µ|dτ.

Solving the above integral, we get the desired result:∥∥∥∥∂eAt∂θi

∥∥∥∥ ≤ ∥∥∥∥∂A∂θi
∥∥∥∥ te−|µ|t.

With the result from Lemma 1, we can conclude that under our assumption of asymptotically
stable full and reduced models, we have that Ā is Hurwitz, and hence the error dynamics given
in equation (7) converges to zero at steady-state. In this way, we have set up the problem to focus
solely on the analysis of the robustness of model reduction while assuming that the important
problem of minimizing the model reduction error has already been addressed. For a given structured
model reduction (and hence the corresponding augmented system above), we can get a bound on
the error in model reduction as the model parameters vary to give a robustness estimate for this
model reduction. We construct a normalized [38] robustness distance estimate for this purpose by
computing the change in error with parameter perturbations around any nominal values given by
θ∗i :

dR =

p∑
i=1

θ∗i
‖ζ(t, θ∗i )‖

·

∥∥∥∥∥ ∂ζ∂θi
∣∣∣∣
θi=θ∗i

∥∥∥∥∥ , (10)

where ζ(t, θ∗i ) is the non-zero error in model reduction for t > 0 and parameter θi = θ∗i . We define
the sensitivity of the error with respect to a parameter θi in the equation above as Sζ :

Sζ =
∂ζ

∂θi
,

where Sζ ∈ Rk. Using this distance estimate, we propose the following robustness metric to determine
the performance of reduced models under parameter uncertainties:

R =
1

1 + dR
(11)

Clearly, for any reduced model we have that R ∈ (0, 1) with R→ 0 corresponding to worst robust
performance and R → 1 corresponding to the best robust performance. Hence, our goal in this
paper is to compute R (through a bound on the norm of Sζ) to give a robustness metric for each
possible reduced model. The results in the next section give upper bounds to the norm of Sζ for
linear and nonlinear system settings. With the help of some examples, we then demonstrate the
computation of the robustness metric as discussed above using these bounds on ‖Sζ‖. Finally, to
decide a particular reduced model we may use a combination of the error and the robustness metrics
to choose a particular reduced model in a given parameter regime.
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III. RESULTS

A. Linear System — Uncertain Initial Conditions
In this section, we consider the uncertainties in the initial conditions — x(0) of a linear system. We
can use this result to assess the robust performance of different possible structured model reductions
when the initial conditions are dependent on the uncertain model parameters.

Theorem 1. For the structured model reduction of the autonomous linear system (1) to the reduced
form of system (2) by using time-scale separation and quasi-steady-state approximation under
uncertain initial conditions, the norm of the sensitivity of the error in model reduction Sζ is bounded
above by

‖Sζ‖2
2 ≤ λmax(P )

∥∥∥∥∂x̄(0)

∂θi

∥∥∥∥2

2

,

where P is the Lyapunov matrix that solves the equation ĀTP + PĀ = −C̄T C̄.

Proof. We have the 2-norm [24] of Sζ defined as:

‖Sζ‖2
2 =

∫ ∞
0

Sζ(t)
TSζ(t)dt.

Using equation (7), we can write Sζ for a parameter θi as

Sζ = C̄eĀt
∂x̄(0)

∂θi
,

since we have assumed that the matrices Ā and C̄ are not dependent on parameters. The norm of
Sζ then becomes

‖Sζ‖2
2 =

∫ ∞
0

(
∂x̄(0)

∂θi

)T
eĀ

T tC̄T C̄eĀt
(
∂x̄(0)

∂θi

)
dt. (12)

From [39, Ch.5], we know that for an observable asymptotically stable system, there exists a unique
matrix P that solves the Lyapunov equation ĀTP+PĀ = −C̄T C̄ given by the observability Gramian:

P = lim
N→∞

Wo(N) = lim
N→∞

∫ N

0

eĀ
T tC̄T C̄eĀtdt,

where Wo(N) is the observability Gramian. Substituting this into equation (12) gives us the desired
result:

‖Sζ‖2
2 =

(
∂x̄(0)

∂θi

)T [∫ ∞
0

eĀ
T tC̄T C̄eĀtdt

](
∂x̄(0)

∂θi

)

⇒ ‖Sζ‖2
2 ≤ λmax (P )

∥∥∥∥∂x̄(0)

∂θi

∥∥∥∥2

2

.
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B. Linear System — Uncertain System Dynamics
Now we consider the case where the system dynamics given by the Ā(θ) matrix is dependent on
uncertain parameters. For simplicity we denote Ā(θ) := Ā, noting that it is parameter-dependent.

Theorem 2. For the structured model reduction of the autonomous linear system (1) to the reduced
form of system (2) by using time-scale separation and quasi-steady-state approximation under
uncertain system dynamics, the norm of the sensitivity of the error in model reduction Sζ is bounded
above by

‖Sζ‖2
2 ≤ M̃

∥∥∥∥∂Ā∂θi
∥∥∥∥2

2

∥∥C̄T C̄
∥∥

2
‖x̄(0)‖2

2 ,

where M̃ = 1/4 |µ|3 and µ is dependent on Ā as given in Lemma 1.

Proof. Write the norm of Sζ as

‖Sζ‖2
2 =

∫ ∞
0

Sζ(t)
TSζ(t)dt. (13)

To derive the bounds, we first write the partial derivative of ζ(t, θ) with respect to a parameter θi
as given in equation (7),

Sζ =
∂ζ

∂θi
= C̄

∂eĀt

∂θi
x̄(0), (14)

assuming that the output matrix C̄ and the initial conditions are independent of model parameters.
We can write the norm of Sζ as,

‖Sζ‖2 =

∫ ∞
0

x̄(0)T

(
∂eĀt

∂θi

)T

C̄T C̄

(
∂eĀt

∂θi

)
x̄(0)dt ≤

∫ ∞
0

∥∥∥∥∥∂eĀt∂θi

∥∥∥∥∥
2 ∥∥C̄T C̄

∥∥ ‖x̄(0)‖2 dt.

Using the result from Lemma 2, we can write,

‖Sζ‖2 ≤
∥∥∥∥∂Ā∂θi

∥∥∥∥2 ∥∥C̄T C̄
∥∥ ‖x̄(0)‖2

∫ ∞
0

t2e−2|µ|tdt.

We can evaluate the integral above by parts:∫ ∞
0

t2e−2|µ|tdt =
1

4 |µ|3
.

We get the desired result for the norm of Sζ by substituting this integral,

‖Sζ‖2 ≤ 1

4 |µ|3

∥∥∥∥∂Ā∂θi
∥∥∥∥2 ∥∥C̄T C̄

∥∥ ‖x̄(0)‖2 .

The robustness metric R follows by using the above bound and equation (11).

Corollary 2.1. Under simultaneous parametric uncertainties in system dynamics and initial condi-
tions, we can write the norm of Sζ as

‖Sζ‖2
2 ≤ λmax(P )

∥∥∥∥∂x̄(0)

∂θi

∥∥∥∥2

2

+
1

4 |µ|3

∥∥∥∥∂Ā∂θi
∥∥∥∥2

2

∥∥C̄T C̄
∥∥

2
‖x̄(0)‖2

2

+
1

2 |µ|2

∥∥∥∥∂Ā∂θi
∥∥∥∥

2

∥∥C̄T C̄
∥∥

2
‖x̄(0)‖2

∥∥∥∥∂x̄(0)

∂θi

∥∥∥∥
2

(15)
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where P is the Lyapunov matrix and µ depends on Ā as in Lemma 1.

Proof. Using the product rule for the derivative of ζ(t, θ) in equation (7), we can prove the desired
result by combining the results from Theorem 1 and 2 and working out the algebra for other terms
that appears in the total derivative equation.

We present the results for nonlinear dynamical systems next. In Appendix 1-C, we also show that the
robustness metric for the nonlinear dynamics simplifies to the same result as given in Corollary 2.1.

C. Nonlinear Dynamics — Model Reduction Robustness
For nonlinear system dynamics, the approach above to derive the bound on the robustness guarantee
does not work because we cannot obtain the error dynamics analytically as was possible for linear
dynamics in equation (7). An alternate approach for deriving a bound on the sensitivity of the error
is using local sensitivity analysis. Consider the following nonlinear dynamics of the full system

ẋ = f(x, θ), y = Cx, x(0) = x0. (16)

The reduced nonlinear model is given using similar notation

˙̂x = f̂(x̂, θ), ŷ = Ĉx̂, x̂(0) = x̂0. (17)

For both the full and the reduced dynamics, we assume that f : E ⊂ Rn → Rn, f̂ : Ê ⊂ Rn̂ → Rn̂

are locally Lipschitz functions and initial conditions x(0) ∈ E, x̂(0) ∈ Ê. The local Lipschitz
continuity gives us that the solutions x(t) and x̂(t) exist and are unique for a finite time interval.
We further assume that equilibrium points x∗ ∈ Rn, x̂∗ ∈ Rn̂ exist and there is no finite escape
time. See [40, Corollary 2.5] for the sufficient smoothness conditions that are needed on the system
dynamics for these assumptions to hold. We make these assumptions throughout this paper for any
nonlinear function describing the system dynamics.

Theorem 3. For the structured model reduction of the nonlinear dynamical system (16) to the
reduced system (17) by using time-scale separation and quasi-steady-state approximation, the norm
of the sensitivity of the error in model reduction, Sζ is bounded above by

‖Sζ‖2
2 ≤ λmaxx̄(P (x̄))

∥∥S̄0

∥∥2

2
+ 2

∫ ∞
0

∥∥Z̄TP (x̄)S̄
∥∥

2
dt+ λmaxx̄(Ṗ (x̄))

∫ ∞
0

∥∥S̄∥∥2

2
dt (18)

where P (x̄) is a matrix that solves the Lyapunov equation J̄(x̄)TP (x̄) + P (x̄)J̄(x̄) = −C̄T C̄ at
the point x̄(t) = x̄ in the augmented nonlinear system trajectory. Here J̄(x̄) is the Jacobian matrix
at x̄, Z̄ is the sensitivity to parameter, and S̄ is the sensitivity coefficients vector of the augmented
system, given by:

J̄(x̄) =

[
∂f
∂x

0

0 ∂f̂
∂x̂

]
, Z̄ =

[ ∂f
∂θi

∂f̂
∂θi

]
, S̄ =

[
∂x
∂θi
∂x̂
∂θi

]
.

Proof. At the point x̄(t) = x̄ in the augmented nonlinear system trajectory, write the sensitivity
system equations [38] for a parameter θi ∈ θ:

˙̄S = J̄(x̄)S̄ + Z̄, Sζ = C̄S̄.

For the norm of the sensitivity of the error, we can write

‖Sζ‖2
2 =

∫ ∞
0

S̄C̄T C̄S̄dt.
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For every x̄, given that there exists a matrix P (x̄) = P T (x̄) � 0 such that J̄(x̄)TP (x̄)+P (x̄)J̄(x̄) =
−C̄T C̄, consider a function V (S̄) = S̄TP (x̄)S̄. Differentiating this function with respect to time,
we have that

dV

dt
= S̄T (J̄TP + P J̄)S̄ + S̄T Ṗ (x̄)S̄ + (Z̄TPS̄ + S̄TPZ̄).

For simplicity of exposition, we denote P (x̄) as P noting that this is a state-dependent Lyapunov
matrix, similarly J̄ is a state-dependent Jacobian matrix of the augmented nonlinear system evaluated
at x̄(t) = x̄. Integrating the expression above from 0 to ∞ and then substituting the expression for
‖Sζ‖2

2, we get

‖Sζ‖2
2 =

∫ ∞
0

−dV
dt
dt+

∫ ∞
0

S̄T Ṗ S̄dt+

∫ ∞
0

(Z̄TPS̄ + S̄TPZ̄)dt,

‖Sζ‖2
2 = − lim

t→∞
V (S̄(t)) + V (S̄(0)) +

∫ ∞
0

S̄T Ṗ S̄dt+

∫ ∞
0

(Z̄TPS̄ + S̄TPZ̄)dt,

Since, P is a positive semidefinite matrix, V will be a non-negative function [32]. Using this fact
and denoting S̄(0) := S̄0, we have the inequality

‖Sζ‖2
2 ≤ S̄T0 PS̄0 +

∫ ∞
0

S̄T Ṗ S̄dt+

∫ ∞
0

(Z̄TPS̄ + S̄TPZ̄)dt. (19)

For the first part of this equation, we can write∥∥S̄T0 PS̄0

∥∥ ≤ λmaxx̄(P )
∥∥S̄0

∥∥2
,

where we compute the maximum eigenvalue of P over all points x̄. Note that if the initial conditions
are independent of all model parameters then S̄0 = 0. Similarly, we get,∥∥∥∥∫ ∞

0

S̄T Ṗ S̄dt

∥∥∥∥ ≤ λmaxx̄(Ṗ )

∫ ∞
0

∥∥S̄∥∥2
dt.

Evaluating the last part in equation (19) proves the theorem, combined with the above results:∫ ∞
0

(
Z̄TPS̄ + S̄TPZ̄

)
dt ≤ 2

∫ ∞
0

∥∥Z̄TPS̄
∥∥

2
dt.

Remark. For computational purposes, we may modify the bound above as

‖Sζ‖2
2 ≤ λmaxx̄(P )

∥∥S̄(0)
∥∥2

2
+ 2N sup

t

∥∥Z̄TPS̄
∥∥

2
+Nλmaxx̄(Ṗ ) sup

t

∥∥S̄∥∥2

2 (20)

where N > 0 is a time at which the system solution is arbitrarily close to the equilibrium point,
that is, ‖x̄(N)− x̄∗‖ < ε for some ε > 0 and x̄∗ is the equilibrium point for the augmented
nonlinear dynamical system. Since we compute P (x̄) at every time step, we can also compute Ṗ (x̄)
numerically. Further, a direct computation for Sζ is also possible but the bounds that we give may
be used as interpret-able metrics for system performance analysis.
Next, we consider the structured model reduction of a controlled nonlinear dynamical system. The
nonlinear system dynamics are then given by,

ẋ = f(x, θ) + g(x, θ)u,

y = Cx, x(0) = x0.
(21)

10
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The reduced nonlinear model is given using similar notation

˙̂x = f̂(x̂, θ) + ĝ(x̂, θ)u,

ŷ = Ĉx̂, x̂(0) = x̂0.
(22)

Here, we have assumed a scalar input u for simplicity of exposition. The results that follow can be
derived for systems with multiple inputs as well but with more complicated algebra.

Theorem 4. For the structured model reduction of the nonlinear controlled dynamics (21) to the
reduced dynamics (22), the norm of the sensitivity of the error Sζ is bounded above by,

‖Sζ‖2
2 ≤ λmaxx̄(P )

∥∥S̄0

∥∥2
+ 2

∫ ∞
0

(∥∥Z̄T
f PS̄

∥∥+
∥∥uT S̄T J̄Tg PS̄∥∥+

∥∥Z̄T
g PS̄u

∥∥) dt
+ λmaxx̄(Ṗ )

∫ ∞
0

∥∥S̄∥∥2
dt

if there exists P (x̄) = P (x̄)T � 0 such that P (x̄)J̄f (x̄)+J̄f (x̄)TP (x̄) = −C̄T C̄ at the point x̄(t) = x̄
in the augmented nonlinear system trajectory. Here J̄f (x̄), J̄g(x̄) and Z̄f , Z̄g are the Jacobian and
parameter sensitivity matrices of augmented nonlinear functions f̄ and ḡ respectively.

Proof. The proof follows similar to the proof of the previous theorem by defining a function V (S̄) =
S̄TP (x̄)S̄ at every point x̄ in the system trajectory and calculating the bound for ‖Sζ‖. See Appendix
1-B for full proof.

The results above assumed that the outputs of the system are linearly related to the states y = Cx,
however, we can derive similar results even without this assumption.

Theorem 5. For the system dynamics in equation (21) with output dynamics given by y = h(x, θ)
and the reduced model dynamics given in equation (22) with output dynamics given by ŷ = ĥ(x̂, θ),
the norm of the sensitivity of error is bounded above by,

‖Sζ‖2
2 ≤ λmaxx̄(P )

∥∥S̄(0)
∥∥2

+ 2

∫ ∞
0

(∥∥Z̄T
f PS̄

∥∥
2

+
∥∥uT S̄T J̄Tg PS̄∥∥+

∥∥Z̄T
g PS̄u

∥∥) dt
+ 2

∥∥Z̄h∥∥2

2
+ λmaxx̄(Ṗ )

∫ ∞
0

∥∥S̄∥∥2
dt

if there exists P (x̄) = P (x̄)T � 0 such that J̄f (x̄)TP (x̄) + P (x̄)J̄f (x̄) = −C̄T
1 C̄1, where

C̄1 =
[
1 −1

] [Jh(x̄) 0

0 Ĵh(x̄)

]
∆
= CeJ̄h(x̄),

and J̄∗(x̄), Z̄∗ refer to the Jacobian and the parameter sensitivity matrices for each nonlinear function
respectively at a point x̄(t) = x̄ in the system trajectory given by:

J̄∗(x̄) =

[
J∗(x) 0

0 Ĵ∗(x̂)

]
, Z̄∗ =

[
Z∗
Ẑ∗

]
, ∗ : f, g, h.

Proof. For every point x̄(t) = x̄, we write the sensitivity of the error in model reduction for a
parameter θi ∈ θ using chain rule:

Sζ =
d(h− ĥ)

dθi
=

(
∂h

∂x

)(
∂x

∂θi

)
+

(
∂h

∂θi

)
−

[(
∂ĥ

∂x̂

)(
∂x̂

∂θi

)
+

(
∂ĥ

∂θi

)]
.

11
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Define the Jacobians Jh(x̄), Ĵh(x̄), parameter sensitivity matrices Zh, Ẑh for h and ĥ respectively
and substitute back to write,

Sζ =
[
1 −1

] [Jh(x) 0

0 Ĵh(x̂)

] [
S

Ŝ

]
+
[
1 −1

] [Zh
Ẑh

]
,

Sζ = C̄1S̄ + CeZ̄h.

Now, consider a function V (S̄) = S̄TP (x̄)S̄ and proceed in a similar way as in the proof of previous
results to write ‖Sζ‖2

2,

‖Sζ‖2
2 =

∫ ∞
0

S̄T C̄T
1 C̄1S̄dt+

∫ ∞
0

Z̄T
h C

T
e CeZ̄hdt

=

∫ ∞
0

S̄T C̄T
1 C̄1S̄dt+ 2

∥∥Z̄h∥∥2

2
.

Using the result from Theorem 4 and J̄f (x̄)TP (x̄) + P (x̄)J̄f (x̄) = −C̄T
1 C̄1, we get the desired

result.

Remark. For all results on robustness estimate, it is possible to further simplify the bounds using
the method in [21] to express this bound only in terms of x̂, the reduced state variables and xc, the
collapsed state variables.

D. Input-Output mapping
For forced nonlinear systems, in addition to the error and the robustness metric, it is also important to
consider the input-output mapping so that the response of a reduced model for an input is similar to
that of the full model. If the mapping from u 7→ y is linear, the computation of induced system norms
is a well studied topic, see for example [41]. However, for general nonlinear systems, this is still an
active research area [42] with results only available under certain structural conditions on the system
dynamics. Similar to the gap-metric for linear systems [43], [44], there have been a few results on
computation of the gap metric for nonlinear systems [45]. We can use similar computational results
in our model reduction procedure by assigning the gap metric to each nonlinear reduced-order model.

On the other hand, if we are only interested in the response to an input at steady-state or at a
fixed number of points in the response, then we can linearize the dynamics at these points and
assess the induced system norm for each reduced model and use this as a metric while choosing a
reduced-order model. For the system operator H : u 7→ y, we define,

γ(H) := sup
u6=0

‖Hu‖
‖u‖

. (23)

E. Automated Model Reduction
Given a well-behaved full system model (linear or nonlinear) under the stability assumptions, we
develop an automated model reduction pipeline based on QSSA and our results on the robustness of
model reduction. In the first step, we solve the time-scale separation problem to obtain all possible
reduced models. Then, we may numerically bound the error in the model reduction for each reduced
model as shown in [21] or compute an error metric (‖ζ‖ = ‖y − ŷ‖) by directly simulating the
system. The latter method also works for nonlinear dynamical systems. We may reject any reduced
model at this stage that does not exhibit the desired level of error performance. However, to make
a clear choice of a reduced model we compute a robustness metric for each reduced model using
the results in the previous section. Finally, if the system is controlled then we may use the input-
output mapping metric as well for the linearized system dynamics to determine the performance of

12
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a reduced model in terms of the input-output response. Note that it is not required to explore the
space of all possible reduced models to compute any of the proposed metrics. This is especially
important for large system models where symbolically computing all possible reduced models would
be computationally infeasible. Hence, for large system models, we can compute a heuristically chosen
set of reduced models. Then, we can compute the error, robustness, and input-output mapping metrics
as desired for the reduced models of interest.

We provide an implementation of these model reduction tools in a package called AutoReduce.
This package is available as an open-source project on GitHub [46]. The software is based on Python
Sympy [47] and works by loading a Systems Biology Markup Language (SBML) [48] model to
import any biological system model. The following important tools are available in this software:
1) Time-scale separation: To solve the time-scale separation problem for a given model, the package
methods can be used to set the dynamics of the given states to collapse (xc) to zero and to
automatically substitute back into the dynamics for the reduced state variables (x̂). This method
automates the QSSA procedure and can be used to compute QSSA based reduced models without
specifying parameter values.
2) Conservation laws: Using conservation laws, we can eliminate states that are conserved from the
imported SBML model. We integrate this approach in our method similar to the method in [49]. The
conservation laws can be explicitly defined and these are used in the software package accordingly
to eliminate state variables and compute the reduced-order models.
3) Comparison metrics: The performance metrics discussed above are implemented in this package
as well. For any pair of full model and reduced model, metrics such as the norm of the error (‖ζ‖)
or the robustness metric (‖Sζ‖) can be computed.

IV. EXAMPLES

In this section, we apply our model reduction robustness estimate results to biomolecular systems
to demonstrate the utility of our approach.

A. Enzymatic reaction dynamics
For the enzymatic reaction system, we can write a chemical reaction network model using mass-
action kinetics for the following reactions:

E + S
a−⇀↽−
d
C

k−→ P + E (24)

The full mass-action kinetics based model with four species is given by:

dS

dt
= −aES + dC,

dC

dt
= aES − (d+ k)C

dE

dt
= −aES + dC + kC,

dP

dt
= kC

For this example, we discuss the standard model reduction approach using the singular perturbation
method along with our automated model reduction approach. Recall that for singular perturbation
theory approach it is important to separate the dynamics analytically according to the time scales,
which might not be possible for general system dynamics. But for this example, it is possible to
derive the reduced model using singular perturbation theory as well.

We write the conservation laws for this system as E = Etot − C and S + C + P = Stot, where
Etot and Stot are the total enzyme and substrate concentrations respectively. We also specify that the
output of interest for this system is concentration of P , the product species.
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For singular perturbation approach, we manually simplify [50, Ch.3] the system dynamics to write
the system with conservation laws in the required form (3):

ε
dC

dt
=

k

Kd

(Etot − C) (Stot − C − P )− kC − εkC,

dP

dt
= kC,

where Kd = d/a and the small parameter ε := k/d. When ε → 0, we obtain the reduced model.
For singular perturbation theory based model reduction, a singular perturbation margin (SPM) has
been proposed in the literature to assess the robustness of model reduction [51]. The SPM evaluates
the maximum value of ε such that the singularly perturbed system dynamics are unstable. But for
biologically relevant parameters the dynamics given above do not become unstable and hence we
do not have a metric to compute the robustness of model reduction directly.

The automated model reduction package first eliminates the two state-variables E and S based
on the conservation laws. In the next step, it solves for time-scale separation to obtain a possible
reduced-order model. For this reduced model, we computed the error metric (‖ζ‖ = 4.2× 10−3) as
well as the robustness metric over the model initial conditions and parameters [46]. If the system
performance is satisfactory, then we can conclude that the final reduced model is given by:

dP

dt
= KLC̄,

where KL = kEtot is the lumped parameter and C̄ is a function of Etot, Stot and model parameters
given by

C̄ =
Stot − P
Stot +Km

where Km = (d+k)/a. All of the simulations, and code required for computations for this example
is available at [46]. An important distinction with our automated computational method to derive
reduced models is that any spurious conditions are easier to catch. For this example, it is shown
in [52, Ch.3] that the commonly used model derived above fails to capture the true dynamics
under certain parameter regimes. The robustness properties of the model reduction would inform the
analysis whenever such a condition may occur.

B. Gene Expression — Design Space Exploration
With this example, we demonstrate that a two-state ribosome and protein model can robustly capture
the chemical reaction dynamics of gene expression. We analytically derive phenomenological models
for gene expression with exactly known mappings to the mechanistic details. We explore the modeling
assumptions of time-scale separation [53]–[55], conservation laws [49], [52], [56] and prove the
robustness of various models under certain parametric conditions.

For gene expression, a two-state model is commonly used [1], [2], [57]–[59] in the literature that
models the dynamics of the mRNA transcript (T ) and the protein concentration (X) as a function
of the DNA copy number (G) and regulatory effects:

dT

dt
= ktxftx(G, ·)− dTT

dX

dt
= ktlftl(T )− dXX,

14
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where ktx is defined as the transcription rate and ktl is the translation rate. Similarly, dT and dX
are the degradation and dilution parameters for the transcript and the protein respectively. The
function ftx(·) is usually a Hill function dependent on the mechanism of transcriptional regulation
(activation or repression). For constitutive expression, this is assumed to be a constant function
of the DNA copy number, ftx(G) = kG. Similarly, ftl(·) could be a constant or a Hill function
dependent on the transcriptional regulation mechanism [52]. Clearly, the parameters in this model
and any parameters in the Hill functions all have empirical meanings but an analytical relationship
with the mechanistic reaction rates is usually obscured [60]. Moreover, a closer analysis would show
that such phenomenological models are only valid under certain assumptions and parameter regimes.

The full CRN model: The full chemical reaction network (CRN) model for the expression of protein
X from a single gene G is described in Table I. In this CRN, the gene G is transcribed by RNA
polymerase (P ) to an mRNA transcript T via a complex (C1) formation reaction. Then, the transcript
T binds to the ribosome R to form the second complex C2, which then translates to express the
protein X . Under the assumption of mass-action kinetics for all reactions, the ordinary differential
equation (ODE) model can be derived as shown on the right in Table I. We refer to this as the full
CRN model for the rest of this paper.
Reduced-order modeling: For the CRN model, the first step is to solve for the conserved quantities
in the model. We assume that the total RNA polymerase in the system and the total ribsomes remain
conserved. From Table I, observe that

dP

dt
+
dC1

dt
= 0,

dR

dt
+
dC2

dt
= 0.

Hence, for constants Ptot and Rtot, we have that Ptot = P +C1 and Rtot = R+C2. These conservation
laws can be used to eliminate C1 and C2. Using AutoReduce, we obtained the following reduced-
order model under conservation laws,

dP

dt
= (ktx + kup)(Ptot − P )− kbpGP,

dT

dt
= ktx(Ptot − P ) + (ktl + kur)(Rtot −R)− kbrRT − dTT,

dR

dt
= (ktl + kur)(Rtot −R)− kbrRT,

dX

dt
= ktl(Rtot −R)− dXX.

(25)

Next, we obtain various reduced models under different time-scale separation assumptions. Recall
that we denote all reduced-order model variables with a hat to differentiate the corresponding variable
in the full model, for example, in a reduced model the protein species will be represented as
X̂ and the corresponding species in the full model is denoted by X . All variables denote the
concentrations for each species and parameters take appropriate units. Furthermore, we define the
following lumped parameter notations which appear as Hill function activation parameters in the
reduced model expressions that we derive next.

K0 :=
ktl + kur
kbr

, K1 :=
ktx + kup
kbp

, Kd :=
ktl + kur
dT

(26)

The mRNA transcript (T̂ ) and protein (X̂) model: Under the assumption that the free ribosomes and
the RNA polymerase dynamics are at QSS (that is Ṙ = 0, Ṗ = 0), we obtain the following model
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Fig. 2: Performance of the gene expression models under different biological conditions. (A) We observe that for weaker binding
of RNA polymerase to the promoter region of the DNA, the time-response of the full CRN model is slower as it takes a longer
time to reach steady-state. The mathematical model with only the mRNA transcript and protein dynamics is unable to capture this
effect since this binding reaction is assumed to be at quasi-steady-state in this model. On the other hand, the R̂∆ model, which
describes the dynamics of the free ribosome and the protein is able to capture the effect. Note that the performance of the [R̂, X̂]
and the R̂∆ model are equivalent. (B) With decreasing total RNA polymerase, the time-response of the full model is slower and only
the ribosome-protein ([R̂, X̂]) model is able to account for this effect. (C) With decreasing ribosome binding strength, none of the
reduced models perfectly capture the full CRN dynamics, but still, the ribosome-protein model is the closest in error performance to
the full model. (D) With a very high amount of total RNA polymerase and the total ribosome count in the system, all models reach
steady-state faster. (E) Under strong RNA polymerase binding to the DNA and high transcription rate, we see that all models exhibit
good error performance. These can be understood as the ideal conditions under which using a one-state protein dynamics model is
also justified. Python code used for this analysis is available publicly on GitHub [46] and can also be run online using this link.

with only the mRNA transcript and the protein dynamics as a function of the DNA copy number
G:

dT̂

dt
= ktxPtot

(
G

K1 +G

)
− dT T̂

dX̂

dt
= ktlRtot

T̂

K0 + T̂
− dXX̂.

(27)

The free ribosome (R̂) and protein (X̂) model: Under the assumption that the mRNA transcript and
the RNA polymerase dynamics are at QSS (that is Ṫ = 0, Ṗ = 0), we obtain the following model
with only the free ribosome and the protein dynamics:

dR̂

dt
=
dT (Rtot − R̂)

K−1
0 R̂ +K−1

d

− ktxPtot
(

G

K1 +G

)(
R̂

R̂ + K0

Kd

)
dX̂

dt
= ktl (Rtot −R)− dXX̂. (28)

Similar to the ribosome-protein ([R̂, X̂]) and the mRNA transcript-protein models ([T̂, X̂]), it is
possible to derive the polymerase-protein ([P̂, X̂]) and the only protein model ([X̂]). The detailed
equations for these two models are not presented here for brevity but their performance is shown in
Figures 2 and 3.
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Fig. 3: Robustness analysis of gene expression models. The figure shows the fragility of different models for all model parameters as
computed by the sensitivity of the error in protein X concentration between the full model and the reduced models under different
parameter conditions. The weighted robustness distance, the normalized robustness metric, and the normed error in model reduction
are labeled for each reduced model in each parameter condition. The combined decision metric r, with weights w1 = 1, w2 = 0.3,
is used to choose one final reduced model in each of the four conditions as shown by the red box. (A) Ideal parameter conditions
under which all reduced models have similar error performance that is close to the full model. The one-state model with only the
protein dynamics has the best performance for the combined metric on error and robustness. (B) Under the condition of weak RNA
polymerase binding strength, we get that the mRNA transcript-protein model has the best performance. (C) Under the condition of
limited RNA polymerase resources, we get that the mRNA transcript-protein model has the best performance similar to (B).(D) Under
the condition of weak ribosome binding strength, we get that the ribosome-protein model ([R̂, X̂]) has the best performance as all
other models have a much higher error and lower robustness. Python code used for this analysis is available publicly on GitHub [46].

The available free ribosome (R̂∆) and protein (X̂) model: We define the available free ribosomes
in the gene expression system as R̂∆ = Rtot− R̂. Substituting R̂ for Rtot− R̂∆, we can derive a new
reduced-order model from the

[
R̂ X̂

]
model — the R̂∆ model:

dR̂∆

dt
= ktxPtot

(
G

K1 +G

)(
Rtot − R̂∆

Rtot − R̂∆ + K0

Kd

)
−

 dT

K−1
0

(
Rtot − R̂∆

)
+K−1

d

 R̂∆,

dX̂

dt
= ktlR̂∆ − dXX̂. (29)

This model simplifies the robustness analysis that follows. Note that the R̂∆ model closely resembles
the commonly used gene expression model and all of its terms are exactly similar to the mRNA
transcript and protein model but scaled by a ribosome count factor. We give two statements regarding
the error performance analysis of the reduced models that we have shown. A justification of these
statements is given in detail in Appendix 2-A and 2-B.

Statement 1. The error between the R̂∆ model and the full CRN model is robust to perturbations in
the binding/unbinding of ribosome to the mRNA transcript (kbr, kur), and also total resources (both
RNA polymerase, Ptot and ribosome, Rtot). Only the perturbations in the translation rate (ktl) and
the protein degradation (dX) parameters significantly affect the error performance of the R̂∆ model.
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Figure 2 shows the error performance of the R̂∆ model under various biologically plausible parameter
conditions and assumptions. The Euclidean norm of Sζ is plotted in Figure 3 to compare the
robustness of the R̂∆ model alongside other models in different biologically plausible parameter
conditions. Using ‖Sζ‖ we can obtain a weighted sum to compute the robustness distance dR for
each reduced model using equation (10). A normalized robustness metric R is also shown for the
reduced models. To choose a particular reduced model for each parameter condition, we use a linear
combination of the error and the robustness distance defined as:

r := w1 ‖ζ‖+ w2dR, (30)

where w1 and w2 are free parameters that can be chosen to weigh the error and the robustness
performance respectively. This metric can be used as a single scalar to compare the reduced models,
lower r implies better performance. Similar to the result above, we give the following statement for
the transcript and the protein model.

Statement 2. The mathematical model with the mRNA transcript and protein dynamics, given in
equation (27), captures the full CRN model dynamics under the assumption of unlimited ribosomal
resources and fast binding reactions. As a result, the error performance of the transcript-protein
model is directly dependent on the mRNA-ribosome binding/unbinding parameters and the translation
parameter. Hence, unlike the R̂∆ model, this model is not robust to perturbations in kbr, kur, and
Rtot in addition to ktl and dX .

We scale up the above analysis by using a gene expression model that consists of endonuclease
mediated mRNA degradation as well. The results for this analysis are given in Appendix 2-C.

C. Population Control — Non-Identifiability Analysis
We discuss a population control synthetic biological circuit example to demonstrate the application
of model reduction to improve parameter inference. Using this example, we also show how our
approach can be used to analytically obtain the non-identifiable manifold description for a system.
We consider a synthetic circuit that controls the population density and composition of a two-member
bacterial consortium [4], [61]. In this circuit, under the control of two inducer input signals, each
cell kills itself by expressing a toxin protein (ccdB). Each cell type rescues the other cell type by
producing a signal that activates the expression of an anti-toxin (ccdA) in its partner cell. There are
two different fluorescent signal readouts corresponding to the population of each cell type, given by
L1 and L2 in the model. The circuit schematic is shown in Figure 4-A, B. For the mathematical
model, we denote the average concentration of the toxin protein (ccdB) in the cell population with
Ni, i = 1, 2. Similarly, the anti-toxin (ccdA) is denoted by Ai. Finally, the concentration of AHL
signals in the consortia is given by Ri for each signal. The description of the model parameters and
their values are given in Table II. For more details on the parameter values and system description,
the reader is referred to [4].

In this mathematical model, an intrinsic assumption is that the signal transport is instantaneous
as the dynamics of transport of signals across cell membranes is not explicitly modeled. The inducer
signals, denoted by L and I , are the two inputs to the system. The mathematical model is given by
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the following ODEs:

dN1

dt
= βR1

(
lR1 +

R2
1

KR1 +R2
1

)
− kbA1N1 − dTN1

dA1

dt
= KrβR2

(
lR2 +

R2
2

KR2 +R2
2

)
− kbA1N1 − dTA1

dR1

dt
= βtac

(
ltac +

I2

Ktac + I2

)
L1 − dSR1

dR2

dt
= βsal

(
lsal +

L2

Ksal + L2

)
L2 − dSR2 (31)

dN2

dt
= βR2

(
lR2 +

R2
2

KR2 +R2
2

)
− kbA2N2 − dTN2

dA2

dt
= KrβR1

(
lR1 +

R2
1

KR1 +R2
1

)
− kbA2N2 − dTA2

dL1

dt
= kC

(
1− L1 + L2

Cmax

)
L1 − dcL1

N1

Ktox +N1

− dL1

dL2

dt
= kC

(
1− L1 + L2

Cmax

)
L2 − dcL2

N2

Ktox +N2

− dL2.

We cannot use singular perturbation theory to reduce this system model since it is not clear how
this model can be expressed in the standard form for singular perturbation framework. Using our
automated model reduction method, we obtain various possible reduced models for this system and
choose the “best” reduced model based on the performance metrics we discussed. Since the full
model has two output variables (L1 and L2), any reduced model for this system must have atleast
these two output variables so that the reduced model may be used effectively for parameter inference.

With our approach, we obtain four different reduced models each with four states. Using the
performance metrics discussed earlier, we choose the reduced-order model in equation (32) since
it is the most robust reduced-model (with the least robustness metric for the given parameters).
The advantages of using this reduced model for parameter identification are clear since the reduced
models only have 13 parameters (compared to 24 in the full model). Further, since an analytical
mapping between the full and the reduced models is available, we can determine the non-identifiable
manifold that could assist in the identifiability analysis for this model [62].

The error and robustness performance for all the reduced models is given in Figure 4-D–F. The
decision metric r with weights w1 = 1, w2 = 0.5, is lowest for the reduced model with both of the
toxin-states. Hence, we choose this reduced model. The dynamics for this model are given by:

f̂1 =

(
lR1 +

βR1x
2
7

x2
7 +KI0

)
− dTx1 −

βR2kbx1 (Ka0lR2 + x2
8)

kbx1x2
8 +Ka0kbx1 + dTx2

8 +Ka0dT
,

f̂2 =

(
lR2 +

βR2x
2
8

x2
7 +Ka0

)
− dTx5 −

βR1kbx5 (KI0lR1 + x2
7)

kbx5x2
7 +KI0kbx5 + dTx2

7 +KI0dT
,

f̂3 = kc

(
1− x7 + x8

Cmax

)
x7 −

dcx1x7

x1 +Ktox

− dx7,

f̂4 = kc

(
1− x7 + x8

Cmax

)
x8 −

dcx5x8

x5 +Ktox

− dx8.

(32)
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Fig. 4: (A): Two-member population and composition control circuit schematic. The two inducer inputs (labeled 1 and 2 in cyan)
activate the ccdB expression in L1 and L2 cell strains respectively. AHL signals diffuse out of each cell type to signal the expression
of anti-toxin (ccdA) in the other cell type. The anti-toxin sequesters away the toxin protein to rescue the cell population. (B): A simple
schematic demonstrating the proliferation and death of each cell type under input signals. (C-1 – C-4): Reduced models obtained
using our automated model reduction approach. Each reduced model has four states. Two of these states are the output signals which
are never reduced in our method. The other two states in each reduced model are labeled in the Figure. (D): Total population (L1

+ L2) obtained on simulating each reduced model and the full model. As we can see, the error performance for all of these four
reduced models is satisfactory. (E): Population composition (L1/L2) for the reduced models and the full model. Composition control
is a feature of this circuit that the reduced models demonstrate as well, although the dynamics of population composition are not
fully captured. (F): Robustness analysis for each reduced model gives us a guide to choose a particular reduced model given the
parameters in the full model. The heatmap shows the norm of the sensitivity of error in model reduction ‖Sζ‖ with respect to the
model parameters. The decision metric r = w1 ‖ζ‖+w2dR is then used to choose the reduced model given in (C-1) since it has the
least r.

Here x̂ =
[
x1 x5 x7 x8

]T and the exact expressions for the lumped parameters are available part
of our software package, AutoReduce, on GitHub [46].

V. DISCUSSION

Our main result in this paper gives a closed-form expression for the robustness guarantee of structured
model reduction of linear dynamical systems. We show two different methods to derive this result
— a direct linear analysis approach for the linear systems and a sensitivity analysis based approach
that also works for nonlinear dynamics. The advantage of our method is that the system does not
need to be in the standard form as in singular perturbation theory and that we can compute the
robustness of the model reduction error with respect to each model parameter individually for a
holistic analysis of different possible model reductions.

We demonstrated the applications of our model reduction approach to biological system examples.
The exploration of design space by changing experimentally tunable parameters in the models as
shown in Figure 2 is an important step towards using mathematical models for biological circuit
design. There are two main advantages to this approach:

1) For any complex biological circuit, a single gene expression would usually form a small part of
the design. Hence, interpreting the key states and parameters involved in tuning its dynamics
is important for the modular design of the complete circuit.

20



To appear in the Wiley International Journal of Robust and Nonlinear Control, 2022

2) For parameter identification, reduced models are commonly used but it is important to verify
the correctness of these reduced models. The automated model reduction method discussed
in this paper is a step towards that goal as it provides a mapping of the reduced models
with the full model alongside the performance guarantees. Further, due to parameter lumping,
the reduced models have fewer number of parameters, improving the parameter identifiability
of the system given measurement data [62]. The non-identifiable manifolds are analytically
known as well.

An interesting future direction would be to extend the results in this paper for the expression of
multiple genes together to explore retroactivity [63] and its effects on various phenomenological
models used for the design of such systems. This study would be a step in building towards a
modular design framework [64] that considers the design of multiple modules together with their
context-dependence. Representing large system models in phenomenological terms is a challenging
task which would require going beyond QSSA based model reduction presented in this paper.
Hence, derivation of reduced models by introducing defined coordinate transformations for states
and parameters might be worth investigating as well. Heuristic guidance is another approach that
may be used for model reduction of large system models. The greedy algorithm in [21] is a possible
direction to apply our results to large biological network models. More research on similar lines
could improve the scalability of the tools discussed in this paper. Finally, we would also like to note
that to compute the robustness metric, new theoretical results on sensitivity of the model reduction
error with respect to simultaneous multiple parameter co-variations could give new insights. Using
sensitivities for robustness analysis is not as widely explored for nonlinear system analysis and hence
building on the results in this paper could lead to alternative robustness analysis methods.
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APPENDIX 1 — PROOFS

A. Linear Dynamics — Derivative of Matrix Exponential
Here we prove equation (8) as given in Lemma 2:

Proof. For a linear system, ẋ = Ax, we can write the solution x(t) = eAtx(0), where eAt is the
matrix exponential. Now, for a parameter θi, we can write

∂x(t)

∂θi
= eAt

∂x(0)

∂θi
+
∂eAt

∂θi
x(0),

using the product rule of differentiation. Define

S(t) :=
∂x(t)

∂θi
, (33)

so we have,

S(t) = eAtS(0) +
∂eAt

∂θi
x(0), (34)
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and write Ṡ(t) using equation (33) and ẋ = Ax as
dS

dt
= A

∂x

∂θi
+
∂A

∂θi
x = AS +

∂A

∂θi
x.

Solving for S(t), we get,

S(t) = eAtS(0) +

∫ t

0

eA(t−τ)∂A

∂θi
x(τ)dτ.

Since x(τ) = eAτx(0), we can simplify the above equation and write

S(t) = eAtS(0) +

[∫ t

o

eA(t−τ)∂A

∂θi
eAτdτ

]
x(0).

Comparing this with equation (34), we get the desired result for the derivative of the matrix
exponential

∂eAt

∂θi
=

∫ t

o

eA(t−τ)∂A

∂θi
eAτdτ.

B. Robustness Metric — Nonlinear Controlled Dynamics
Proof of Theorem 4:

Proof. For the augmented system we can write the sensitivity coefficients as

S̄ =
∂x̄

∂θi
,

where θi ∈ θ. Using chain rule at point x̄(t) = x̄ in the system trajectory, we can derive the sensitivity
system equation given by

˙̄S =
(
J̄f (x̄)S̄ + Z̄f

)
+
(
J̄g(x̄)S̄ + Z̄g

)
u,

for a scalar u and Jacobian matrices Jf and Jg are state-dependent. Consider a function V (S̄) =
S̄TP (x̄)S̄ for P (x̄) = P (x̄)T � 0 that satisfies the conditions given in the theorem statement. Note
that we drop the x̄ notation from J̄f , J̄g, P for simplicity. Taking the derivative of V with respect to
time, we can write,

dV

dt
= ˙̄STPS̄ + S̄TP ˙̄S + S̄T Ṗ S̄.

Substituting for ˙̄S we get
dV

dt
= S̄T

(
P J̄f + J̄Tf P

)
S̄ + uT S̄T J̄Tg PS̄ + S̄TP J̄gS̄u+

(
S̄TPZ̄f + Z̄T

f PS̄
)

+
(
S̄TPZ̄gu+ uT Z̄T

g PS̄
)

+ S̄T Ṗ S̄

Now if there exists a matrix P = P T such that

P J̄f + J̄Tf P = −C̄T C̄

then we get the following bound by manipulating the 2-norm of Sζ and denoting S̄(0) := S̄0,

‖Sζ‖2
2 ≤ S̄T0 PS̄0 + 2

∫ ∞
0

(∥∥uT S̄T J̄Tg PS̄∥∥ +
∥∥Z̄T

f PS̄
∥∥+

∥∥uT Z̄T
g PS̄

∥∥) dt+

∫ ∞
0

S̄T Ṗ S̄dt

We can simplify the above to get the desired result,

‖Sζ‖2
2 ≤ λmaxx̄(P )

∥∥S̄0

∥∥2
+ 2

∫ ∞
0

(∥∥uT S̄T J̄Tg PS̄∥∥ +
∥∥Z̄T

f PS̄
∥∥+

∥∥uT Z̄T
g PS̄

∥∥) dt
+ λmaxx̄(Ṗ )

∫ ∞
0

∥∥S̄∥∥2
dt.
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C. Equivalence of the two results for linear dynamics
A direct comparison of the results in Corollary 2.1 (robustness estimate for linear dynamics) and
Theorem 3 (robustness estimate for nonlinear dynamics) is not evident. But for the special case of
linear dynamics, we have the closed-form solutions for S̄(t) and Z̄(t). Using these we can evaluate
the bound given in Theorem 3 further.
Claim. The bound on the sensitivity of the error in model reduction when obtained using sensitivity
analysis approach (as in equation (18)) is same as the bound obtained using direct linear analysis
approach (as given in equation (15)). In particular, we have that,

2

∫ ∞
0

∥∥∥∥∥
(
∂Ā

∂θi
x̄

)T
PS̄

∥∥∥∥∥ dt =
1

4 |µ|3

∥∥∥∥∂Ā∂θi
∥∥∥∥2 ∥∥C̄T C̄

∥∥ ‖x̄(0)‖2 +
1

2 |µ|2

∥∥∥∥∂Ā∂θi
∥∥∥∥∥∥C̄T C̄

∥∥ ‖x̄(0)‖
∥∥∥∥∂x̄(0)

∂θi

∥∥∥∥
(35)

Note that the first term in equations (15) and (18) is the same and hence we have removed that term
in the equation above. This term corresponds to the parametric uncertainty in the initial conditions.

Proof. To prove the above claim, we start by evaluating the different parts of the left hand side
expression using the closed-form solutions for linear dynamics. First, note that from the sensitivity
equation [38] for a linear system we have that

˙̄S = ĀS̄ +
∂Ā

∂θi
x̄(t).

Solving the equation above for S̄(t) and taking the norm we get∥∥S̄(t)
∥∥ ≤ ∥∥∥eĀtS̄(0)

∥∥∥+

∥∥∥∥∫ t

0

eĀ(t−τ)∂Ā

∂θi
x̄(τ)dτ

∥∥∥∥
≤ e−|µ|t

∥∥S̄(0)
∥∥+

∥∥∥∥∂Ā∂θi
∥∥∥∥ ‖x̄(0)‖ te−|µ|t

(36)

using Lemma 1 and 2. Similarly, for
∥∥Z̄∥∥, we have∥∥Z̄∥∥ =

∥∥∥∥∂Ā∂θi x̄
∥∥∥∥ ≤ ∥∥∥∥∂Ā∂θi

∥∥∥∥ ‖x̄(0)‖ e−|µ|t. (37)

Finally, for the Lyapunov matrix, we know that

‖P‖ =

∥∥∥∥∫ ∞
0

eĀ
T tC̄T C̄eĀtdt

∥∥∥∥ ,
using the observability Gramian. Using Lemma 1, we have

‖P‖ ≤
∫ ∞

0

e−|µ|t
∥∥C̄T C̄

∥∥ e−|µ|tdt.
So,

‖P‖ ≤
∥∥C̄T C̄

∥∥∫ ∞
0

e−2|µ|tdt,

which gives us that

‖P‖ ≤ 1

2 |µ|
∥∥C̄T C̄

∥∥ . (38)

Substituting the equations (36), (37), and (38) into the left hand size of equation (35), we get the
desired result that proves our claim.
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Although the two approaches give equivalent results for linear dynamics, the advantage with the
sensitivity analysis approach is that it is a general method that can be used for nonlinear dynamical
systems as well.

APPENDIX 2 — EXAMPLES

A. Gene Expression — Robustness Statement 1
Justification. To demonstrate robustness of the R̂∆ model, we can look at the sensitivity of the error
between the R̂∆ model and the full CRN model to various parameter perturbations. Define the error
as ζ := X − X̂ , where X and X̂ represent the protein concentration in the full CRN model and the
R̂∆ model respectively. In the case where the error ζ between the two models is within acceptable
bounds, we additionally desire that this error is not sensitive to any of the parameters. The sensitivity
of the error to perturbation in a parameter θi is given by Sζ = ∂ζ/∂θi. Hence, this “fragility metric”
Sζ must be minimized to achieve higher robustness. Analyzing the rate of change of Sζ with time
for different parameters can justify the statement.

To analytically derive Ṡζ , we use the equation Sζ = C̄S̄ to write

Ṡζ =
([
C −Ĉ

])([J 0

0 Ĵ

] [
S

Ŝ

]
+

[
Z

Ẑ

])
.

For the model parameters θi ∈ {ktx, kbp, kup, kbr, kur, Ptot, Rtot}, we have the dynamics of Sζ given
by

Ṡζ = ktl
∂
(
R̂∆ − R̂∆

)
∂θi

− dXSζ . (39)

For the protein degradation rate θi = dX , we have

Ṡζ = ktl
∂
(
R̂∆ − R̂∆

)
∂dX

− ζ − dXSζ . (40)

For the translation rate θi = ktl, we have

Ṡζ = ktl
∂
(
R̂∆ − R̂∆

)
∂ktl

+
(
R̂∆ − R̂∆

)
− dXSζ . (41)

From equations (39) – (41), we have that for all positive parameter values and stable models, the
dynamics of Sζ are convergent to a fixed point. More importantly, the fragility metric, Sζ directly
depends on the translation rate ktl and the protein degradation rate dX , proving the assertion of the
statement above. Also, for ktl and dX , we see that an extra term appears in the error sensitivity
dynamics implying higher fragility of the R̂∆ model under perturbations to the translation rate and
the protein degradation rate.

B. Gene Expression — Robustness Statement 2
Justification. Similar to the justification of Statement 1, we can analyze the dynamics of the sensi-
tivity of the error to parameter perturbations for the mRNA transcript and protein dynamical model.
For the translation rate, that is θi = ktl,

Ṡζ = ktl
∂R̂∆

∂ktl
− ktlRtotK0(

K0 + T̂
)2

∂T̂

∂ktl
+ R̂∆ −

RtotT̂

K0 + T̂
+

ktlRtotT̂

kbr

(
K0 + T̂

)2 − dXSζ . (42)
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For the protein degradation parameter θi = dX ,

Ṡe = ktl
∂R̂∆

∂dX
− ktlRtotK0(

K0 + T̂
)2

∂T̂

∂dX
− ζ − dXSζ . (43)

For the total ribosome count, θi = Rtot, we have,

Ṡe = ktl
∂R̂∆

∂Rtot
− ktlRtotK0(

K0 + T̂
)2

∂T̂

∂Rtot
− ktlT̂

K0 + T̂
− dXSζ . (44)

For the ribsome-transcript binding parameter, θi = kbr, we have,

Ṡζ = ktl
∂R̂∆

∂kbr
− ktlRtotK0(

K0 + T̂
)2

∂T̂

∂kbr
− ktlK

2
0RtotT̂(

K0 + T̂
)2

(ktl + kur)
− dXSζ . (45)

For the ribsome-transcript unbinding parameter, θi = kur, we have,

Ṡζ = ktl
∂R̂∆

∂kur
− ktlRtotK0(

K0 + T̂
)2

∂T̂

∂kur
+

ktlRtotK0T̂(
K0 + T̂

)2

(ktl + kur)
− dXSζ . (46)

For all other parameters, we have,

Ṡζ = ktl
∂R̂∆

∂kur
− ktlRtotK0(

K0 + T̂
)2

∂T̂

∂kur
− dXSζ . (47)

From equations (42) – (47), we can conclude that Sζ directly depends on the total ribosome count,
Rtot, the binding/unbinding parameters of the transcript with ribosome, kbr, kur, the translation rate,
ktl, and the protein degradation rate, dX . This is in contrast with the results for the R̂∆ model where
the dynamics of Sζ only depend on the translation rate and the protein degradation rate. Hence, the
R̂∆ model is robust to all other parameters whereas the transcript-protein model is fragile to all of
these parameters, proving the statement assertion.

C. Gene Expression with Endonuclease Mediated mRNA Degradation
To investigate the scalability of this approach, we expand on the gene expression example by
including enzymatic degradation of the mRNA transcript mediated by endonucleases. Here we
have this enzymatic degradation in addition to the basal degradation rate dT . The CRN and the
corresponding mass-action ODE model is given in Table III.

Observe that in this model we have the following conservation law relationships,

dP

dt
+
dC1

dt
= 0,

dR

dt
+
dC2

dt
= 0,

dE

dt
+
dC3

dt
= 0.

Hence, for constants Ptot, Rtot, and Etot, we can write

P + C1 = Ptot, R + C2 = Rtot, E + C3 = Etot.

Using these algebraic relationships, we can eliminate the complexes C1, C2, and C3 to obtain a
reduced ODE model. Next, we explore various time-scale separation assumptions that may be used
to get further reduced models and discuss their performance and robustness with respect to the model
parameters.
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Fig. 5: Performance of the gene expression with endonuclease mediated mRNA degradation models under different biological
conditions. (A) We observe that for weaker binding of RNA polymerase to the promoter region of the DNA implies a slower time-
response which is only captured perfectly by the free ribosome model that also models the endonuclease dynamics. The mathematical
model with only the mRNA transcript and protein dynamics is unable to capture this effect since this binding reaction is assumed to be
at quasi-steady-state in this model, but it is the only two-state model for this system with a satisfactory steady-state performance. (B)
We observe a similar effect with decreasing total RNA polymerase in the system. (C) With decreasing ribosome binding strength, none
of the reduced models perfectly capture the full CRN dynamics, but still, the ribosome-protein model with endonuclease dynamics
([R̂, Ê, X̂) is the closest in error performance to the full model. (D) With a very high amount of cellular resources, all models reach
steady-state faster. (E) Under weak endonuclease binding, we observe that only the model that explicitly models the endonuclease
dynamics gives good performance. Python code used for this analysis is available publicly on GitHub [46].

1) The mRNA transcript and protein dynamical model: Assuming that the dynamics of all species
in the model other than the mRNA transcript T and the protein X are at quasi-steady-state, we get
the following model. Observe that a new degradation Hill function term appears in the dynamics of
the mRNA transcript that is dependent on the endonuclease binding parameters.

dT̂

dt
= ktxPtot

G

K1 +K1G
− dEEtot

T̂

K2 + T̂
− dT T̂

dX̂

dt
= ktlRtot

T̂

K0 + T̂
− dXX̂ (48)

where K2 is a new lumped parameter that is the Hill activation parameter for the endonuclease
binding,

K2 =
dE + kue
kbe

.

2) Modeling the dynamics of available free ribosomes: As before, we define the available free
ribosomes in the system as R̂∆ = Rtot − R̂. Using this definition and assuming that the dynamics
of all species in the model other than the free ribosomes, the mRNA transcript, and the protein are
at quasi-steady-state we get the following model.

dT̂

dt
= ktxPtot

G

K1 +G
+ (ktl + kur)R̂∆ − dEEtot

T̂

K2 + T̂
− kbr(Rtot − R̂∆)T̂ − dT T̂

dR̂∆

dt
= kbr(Rtot − R̂∆)T̂ − (ktl + kur)R̂∆,

dX̂

dt
= ktlR̂∆ − dXX̂ (49)
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Fig. 6: Robustness analysis of gene expression models with endonuclease mediated degradation of mRNA. The heatmaps show the
norm of Sζ for each model parameter. Lower Sζ implies better robust performance. (A): Robustness of the reduced models under
ideal parameter conditions corresponding to unlimited resources as shown in Figure 5-D where the error for all reduced models is
the minimum. Using the combined decision metric r = w1 ‖ζ‖ + w2dR, we get that the reduced model with the states T̂, R̂, X̂ is
the best choice. (B): For weak RNA polymerase binding strength, we obtain that the T̂, R̂, X̂ model performs better compared to the
other reduced models. (C): Under weak ribosome binding strength condition, we get that the reduced model consisting of R̂, Ê, X̂ as
its states has the best performance. (D): Under limited resources, the T̂, R̂, X̂ model is again able to capture the full CRN dynamics
with the least error and most robustness.

Note that the model with only R̂∆ and the protein X̂ dynamics does not work in this case since the
enzymatic degradation reactions for the mRNA transcript are significant for the overall dynamics.
So, either T or E is necessary in the ribosome and protein model to get satisfactory performance.
As a result, we can also obtain a reduced model with

[
R̂ Ê X̂

]
as the states. The performance

of all of the possible reduced models is shown in Figure 5.

Although a similar robustness analysis as shown in Statements 1 and 2 can be done for this system
dynamics it would be easier to numerically compute a bound on Sζ for all reduced models. The
heatmap of the Euclidean norm of this metric is shown in Figure 6. We use the upper bound for
the norm of Sζ derived in this paper to compute the robustness estimate for each model parameter.
The AutoReduce software can be used to compute the model equations and these metrics.
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TABLE I: Gene expression model.

CRN ODE model Nominal Parameter Values

G+ P
kbp−−⇀↽−−
kup

C1
dP
dt

= (kup + ktx)C1 − kbpGP kbp = 80, kup = 2

C1
ktx−−→ G+ P + T dC1

dt
= kbpGP − (kup + ktx)C1 ktx = 0.5

T +R
kbr−−⇀↽−−
kur

C2
dT
dt

= ktxC1 + (kur + ktl)C2 − kbrTR− dTT kbr = 80, kur = 2

C2
ktl−−→ T +R+X dR

dt
= (kur + ktl)C2 − kbrTR ktl = 0.5

T
dT−−→ ∅ dC2

dt
= kbrTR− (kur + ktl)C2 dT = 0.5

X
dX−−→ ∅ dX

dt
= ktlC2 − dXX dX = 0.01

TABLE II: Model parameters

S.no. Parameters Description Unit Guess
1 βR1 Max transcription rate of inducible promoter (for N1 and A2) con./hr 6
2 lR1 Leak constant of inducible promoter (for N1 and A2) N/A 2e-3
3 KR1 Activation constant of inducible promoter (for N1 and A2) con. 430
4 kb Binding rate between toxin and anti-toxin 1/con.hr 30
5 βR2 Max transcription rate of inducible promoter (for N2 and A1) con./hr 6
6 lR2 Leak constant of inducible promoter (for N2 and A1) N/A 2e-3
7 KR2 Activation constant of inducible promoter (for N2 and A1) con. 190
8 βtac Max transcription rate of inducible promoter (for R1) con./hr 19.8e-3
9 ltac Leak constant of inducible promoter (for R1) N/A 1.5e-3
10 Ktac Activation constant of inducible promoter (for R1) con. 1.4e5
11 βsal Max transcription rate of inducible promoter (for R2) con./hr 14.4e-3
12 lsal Leak constant of inducible promoter (for R2) N/A 2.1e-4
13 Ksal Activation constant of inducible promoter (for R2) con. 13
14 kC Cell division rate 1/hr 0.6
15 Cmax Population cap conc. 5500
16 dc Cell death rate 1/conc.hr 0.8
18 I Max induced I (input 1) concentration con. 1e6
20 L Max induced L (input 2) concentration con. 324
21 Ktox Repression coefficient of toxin to proliferation con. 1
22 dS Degradation constant of AHL signals 1/hr 0.5
23 d Basal degradation of each cell 1/hr 0.1
24 dT Basal degradation of toxins and antitoxins 1/hr 1.5
25 Kr Ribosome scaling factor N/A 5
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TABLE III: Gene expression with endonuclease mediated mRNA degradation

CRN ODE model Nominal Parameter Values

G+ P
kbp−−⇀↽−−
kup

C1
dP
dt

= (kup + ktx)C1 − kbpGP kbp = 80, kup = 2

C1
ktx−−→ G+ P + T dC1

dt
= kbpGP − (kup+ ktx)C1 ktx = 0.5

T +R
kbr−−⇀↽−−
kur

C2
dT
dt

= ktxC1 + (kur + ktl)C2

−kbrTR+ kueC3 − kbeTE − dTT kbr = 80, kur = 2

C2
ktl−−→ T +R+X dR

dt
= (kur + ktl)C2 − kbrTR ktl = 0.5

T + E
kbe−−⇀↽−−
kue

C3
dC2
dt

= kbrTR− (kur + ktl)C2 kbe = 10, kue = 2

C3
dE−−→ E dE

dt
= (kui + dE)C3 − kbeTE dE = 0.1

T
dT−−→ ∅ dC3

dt
= kbeTE − (kue + dE)C3 dT = 0.5

X
d−→ ∅ dX

dt
= ktlC2 − dXX dX = 0.01
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